Computational modeling of a multiple tube solar reactor with specularly reflective cavity walls. Part 2: Steam gasification of carbon

2012 ◽  
Vol 81 ◽  
pp. 285-297 ◽  
Author(s):  
Janna Martinek ◽  
Carl Bingham ◽  
Alan W. Weimer
Author(s):  
Nicolas Piatkowski ◽  
Christian Wieckert ◽  
Aldo Steinfeld

Gasification of coal, biomass, and other carbonaceous materials for high-quality syngas production is considered using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a SiC-coated graphite plate, with the upper one serving as the radiative absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses. A 5-kW prototype reactor with an 8 cm-depth, 14.3 cm-diameter cylindrical bed was fabricated and tested in the High-Flux Solar Simulator at PSI, subjected to solar flux concentrations up to 2300 suns. Beech charcoal was used as a model feedstock and converted into high-quality syngas (predominantly H2 and CO) with packed-bed temperatures up to 1500 K, an upgrade factor of the calorific value of 1.33, and an energy conversion efficiency of 29%. Pyrolysis was evident through the evolution of higher gaseous hydrocarbons during heating of the packed bed. The engineering design, fabrication, and testing of the solar reactor are described.


Sign in / Sign up

Export Citation Format

Share Document