One-sided invariant manifolds, recursive folding, and curvature singularity in area-preserving nonlinear maps with nonuniform hyperbolic behavior

2006 ◽  
Vol 29 (1) ◽  
pp. 36-47 ◽  
Author(s):  
S. Cerbelli ◽  
M. Giona
1993 ◽  
Vol 132 ◽  
pp. 73-89
Author(s):  
Yi-Sui Sun

AbstractWe have systematically made the numerical exploration about the perturbation extension of area-preserving mappings to three-dimensional ones, in which the fixed points of area preserving are elliptic, parabolic or hyperbolic respectively. It has been observed that: (i) the invariant manifolds in the vicinity of the fixed point generally don’t exist (ii) when the invariant curve of original two-dimensional mapping exists the invariant tubes do also in the neighbourhood of the invariant curve (iii) for the perturbation extension of area-preserving mapping the invariant manifolds can only be generated in the subset of the invariant manifolds of original two-dimensional mapping, (iv) for the perturbation extension of area preserving mappings with hyperbolic or parabolic fixed point the ordered region near and far from the invariant curve will be destroyed by perturbation more easily than the other one, This is a result different from the case with the elliptic fixed point. In the latter the ordered region near invariant curve is solid. Some of the results have been demonstrated exactly.Finally we have discussed the Kolmogorov Entropy of the mappings and studied some applications.


1987 ◽  
Vol 7 (4) ◽  
pp. 567-595 ◽  
Author(s):  
Fernando Oliveira

AbstractThis work is concerned with the generic existence of homoclinic points for area preserving diffeomorphisms of compact orientable surfaces. We give a shorter proof of Pixton's theorem that shows that, Cr-generically, an area preserving diffeomorphism of the two sphere has the property that every hyperbolic periodic point has transverse homoclinic points. Then, we extend Pixton's result to the torus and investigate certain generic aspects of the accumulation of the invariant manifolds all over themselves in the case of symplectic diffeomorphisms of compact manifolds.


2021 ◽  
Vol 280 (8) ◽  
pp. 108931
Author(s):  
Laiyuan Gao ◽  
Shengliang Pan ◽  
Dong-Ho Tsai

2019 ◽  
Vol 4 (5) ◽  
Author(s):  
N. E. Sujovolsky ◽  
G. B. Mindlin ◽  
P. D. Mininni

Author(s):  
Jennifer Duncan

AbstractThe Brascamp–Lieb inequalities are a very general class of classical multilinear inequalities, well-known examples of which being Hölder’s inequality, Young’s convolution inequality, and the Loomis–Whitney inequality. Conventionally, a Brascamp–Lieb inequality is defined as a multilinear Lebesgue bound on the product of the pullbacks of a collection of functions $$f_j\in L^{q_j}(\mathbb {R}^{n_j})$$ f j ∈ L q j ( R n j ) , for $$j=1,\ldots ,m$$ j = 1 , … , m , under some corresponding linear maps $$B_j$$ B j . This regime is now fairly well understood (Bennett et al. in Geom Funct Anal 17(5):1343–1415, 2008), and moving forward there has been interest in nonlinear generalisations, where $$B_j$$ B j is now taken to belong to some suitable class of nonlinear maps. While there has been great recent progress on the question of local nonlinear Brascamp–Lieb inequalities (Bennett et al. in Duke Math J 169(17):3291–3338, 2020), there has been relatively little regarding global results; this paper represents some progress along this line of enquiry. We prove a global nonlinear Brascamp–Lieb inequality for ‘quasialgebraic’ maps, a class that encompasses polynomial and rational maps, as a consequence of the multilinear Kakeya-type inequalities of Zhang and Zorin-Kranich. We incorporate a natural affine-invariant weight that both compensates for local degeneracies and yields a constant with minimal dependence on the underlying maps. We then show that this inequality generalises Young’s convolution inequality on algebraic groups with suboptimal constant.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jeremias Aguilera-Damia ◽  
Louise M. Anderson ◽  
Evan Coleman

Abstract A solvable current-current deformation of the worldsheet theory of strings on AdS3 has been recently conjectured to be dual to an irrelevant deformation of the spacetime orbifold CFT, commonly referred to as single-trace $$ T\overline{T} $$ T T ¯ . These deformations give rise to a family of bulk geometries which realize a non-trivial flow towards the UV. For a particular sign of this deformation, the corresponding three-dimensional geometry approaches AdS3 in the interior, but has a curvature singularity at finite radius, beyond which there are closed timelike curves. It has been suggested that this singularity is due to the presence of “negative branes,” which are exotic objects that generically change the metric signature. We propose an alternative UV-completion for geometries displaying a similar singular behavior by cutting and gluing to a regular background which approaches a linear dilaton vacuum in the UV. In the S-dual picture, a singularity resolution mechanism known as the enhançon induces this transition by the formation of a shell of D5-branes at a fixed radial position near the singularity. The solutions involving negative branes gain a new interpretation in this context.


Sign in / Sign up

Export Citation Format

Share Document