rational maps
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 71)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 10 ◽  
Author(s):  
Russell Lodge ◽  
Yusheng Luo ◽  
Sabyasachi Mukherjee

Abstract In this article, we establish an explicit correspondence between kissing reflection groups and critically fixed anti-rational maps. The correspondence, which is expressed using simple planar graphs, has several dynamical consequences. As an application of this correspondence, we give complete answers to geometric mating problems for critically fixed anti-rational maps.


2021 ◽  
Author(s):  
Li-Ping Zhang ◽  
Yang Liu ◽  
Zhou-Chao Wei ◽  
Hai-Bo Jiang ◽  
Qin-Sheng Bi

Abstract This paper studies a new class of two-dimensional rational maps exhibiting self-excited and hidden attractors. The mathematical model of these maps is firstly formulated by introducing a rational term. The analysis of existence and stabilities of the fixed points in these maps suggests that there are four types of fixed points, i.e., no fixed point, one single fixed point, two fixed points and a line of fixed points. To investigate the complex dynamics of these rational maps with different types of fixed points, numerical analysis tools, such as time histories, phase portraits, basins of attraction, Lyapunov exponent spectrum, Lyapunov (Kaplan-Yorke) dimension and bifurcation diagrams, are employed. Our extensive numerical simulations identify both self-excited and hidden attractors, which were rarely reported in the literature. Therefore, the multi-stability of these maps, especially the hidden one, is further explored in the present work.


2021 ◽  
pp. 253-274
Author(s):  
Robert L. Devaney
Keyword(s):  

2021 ◽  
pp. 1-46
Author(s):  
DAVID PFRANG ◽  
MICHAEL ROTHGANG ◽  
DIERK SCHLEICHER

Abstract We extend the concept of a Hubbard tree, well established and useful in the theory of polynomial dynamics, to the dynamics of transcendental entire functions. We show that Hubbard trees in the strict traditional sense, as invariant compact trees embedded in $\mathbb {C}$ , do not exist even for post-singularly finite exponential maps; the difficulty lies in the existence of asymptotic values. We therefore introduce the concept of a homotopy Hubbard tree that takes care of these difficulties. Specifically for the family of exponential maps, we show that every post-singularly finite map has a homotopy Hubbard tree that is unique up to homotopy, and that post-singularly finite exponential maps can be classified in terms of homotopy Hubbard trees, using a transcendental analogue of Thurston’s topological characterization theorem of rational maps.


Nonlinearity ◽  
2021 ◽  
Vol 34 (9) ◽  
pp. 6587-6626
Author(s):  
Khashayar Filom
Keyword(s):  

Nonlinearity ◽  
2021 ◽  
Vol 34 (9) ◽  
pp. 6248-6272
Author(s):  
Ruben A Hidalgo ◽  
Saúl Quispe
Keyword(s):  

2021 ◽  
Vol 26 (2) ◽  
pp. 188-208
Author(s):  
Beatriz Campos ◽  
Jordi Canela ◽  
Antonio Garijo ◽  
Pura Vindel

In this paper we analyse the dynamics of a family of rational operators coming from a fourth-order family of root-finding algorithms. We first show that it may be convenient to redefine the parameters to prevent redundancies and unboundedness of problematic parameters. After reparametrization, we observe that these rational maps belong to a more general family Oa,n,k of degree n+k operators, which includes several other families of maps obtained from other numerical methods. We study the dynamics of Oa,n,k and discuss for which parameters n and k these operators would be suitable from the numerical point of view.


2021 ◽  
pp. 1-33
Author(s):  
VAN TU LE

Abstract A holomorphic endomorphism of ${{\mathbb {CP}}}^n$ is post-critically algebraic if its critical hypersurfaces are periodic or preperiodic. This notion generalizes the notion of post-critically finite rational maps in dimension one. We will study the eigenvalues of the differential of such a map along a periodic cycle. When $n=1$ , a well-known fact is that the eigenvalue along a periodic cycle of a post-critically finite rational map is either superattracting or repelling. We prove that, when $n=2$ , the eigenvalues are still either superattracting or repelling. This is an improvement of a result by Mattias Jonsson [Some properties of 2-critically finite holomorphic maps of P2. Ergod. Th. & Dynam. Sys.18(1) (1998), 171–187]. When $n\geq 2$ and the cycle is outside the post-critical set, we prove that the eigenvalues are repelling. This result improves one obtained by Fornæss and Sibony [Complex dynamics in higher dimension. II. Modern Methods in Complex Analysis (Princeton, NJ, 1992) (Annals of Mathematics Studies, 137). Ed. T. Bloom, D. W. Catlin, J. P. D’Angelo and Y.-T. Siu, Princeton University Press, 1995, pp. 135–182] under a hyperbolicity assumption on the complement of the post-critical set.


Sign in / Sign up

Export Citation Format

Share Document