On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations

2017 ◽  
Vol 104 ◽  
pp. 107-120 ◽  
Author(s):  
R. Sahadevan ◽  
P. Prakash
Author(s):  
E. H. El Kinani ◽  
A. Ouhadan

This paper uses Lie symmetry analysis to reduce the number of independent variables of time fractional partial differential equations. Then symmetry properties have been employed to construct some exact solutions.


Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).


Author(s):  
Sangita Choudhary ◽  
Varsha Daftardar-Gejji

AbstractIn this paper invariant subspace method has been employed for solving linear and non-linear time and space fractional partial differential equations involving Caputo derivative. A variety of illustrative examples are solved to demonstrate the effectiveness and applicability of the method.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Hengtai Wang ◽  
Aminu Ma’aruf Nass ◽  
Zhiwei Zou

In this article, we discussed the Lie symmetry analysis of C 1 m , a , b fractional and integer order differential equations. The symmetry algebra of both differential equations is obtained and utilized to find the similarity reductions, invariant solutions, and conservation laws. In both cases, the symmetry algebra is of low dimensions.


Sign in / Sign up

Export Citation Format

Share Document