lie symmetry
Recently Published Documents


TOTAL DOCUMENTS

636
(FIVE YEARS 233)

H-INDEX

28
(FIVE YEARS 10)

Author(s):  
Hengchun Hu ◽  
Runlan Sun

In this paper, the (3+1)-dimensional constant coefficient of Date–Jimbo–Kashiwara–Miwa (CCDJKM) equation is studied. All of the vector fields, infinitesimal generators, Lie symmetry reductions and different similarity reduction solutions are constructed. Due to the arbitrary functions in the infinitesimal generators, the (3+1)-dimensional CCDJKM equation can further be reduced to many (2+1)-dimensional partial differential equations. The explicit solutions of the similarity reduction equations, which include the quasi-periodic wave solution, the interaction solution between the periodic wave and a kink soliton and the trigonometric function solutions, are constructed with proper arbitrary function selection, and these new exact solutions are given out analytically and graphically.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 109
Author(s):  
Roman Cherniha ◽  
Vasyl’ Davydovych ◽  
Joanna Stachowska-Pietka ◽  
Jacek Waniewski

The model for perfused tissue undergoing deformation taking into account the local exchange between tissue and blood and lymphatic systems is presented. The Lie symmetry analysis in order to identify its symmetry properties is applied. Several families of steady-state solutions in closed formulae are derived. An analysis of the impact of the parameter values and boundary conditions on the distribution of hydrostatic pressure, osmotic agent concentration and deformation of perfused tissue is provided applying the solutions obtained in examples describing real-world processes.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8530
Author(s):  
Khalil Ur Rehman ◽  
Wasfi Shatanawi ◽  
Taqi A. M. Shatnawi

Heat transfer systems for chemical processes must be designed to be as efficient as possible. As heat transfer is such an energy-intensive stage in many chemical processes, failing to focus on efficiency can push up costs unnecessarily. Many problems involving heat transfer in the presence of a chemically reactive species in the domain of the physical sciences are still unsolved because of their complex mathematical formulations. The same is the case for heat transfer in chemically reactive magnetized Tangent hyperbolic liquids equipped above the permeable domain. Therefore, in this work, a classical remedy for such types of problems is offered by performing Lie symmetry analysis. In particular, non-Newtonian Tangent hyperbolic fluid is considered in three different physical frames, namely, (i) chemically reactive and non-reactive fluids, (ii) magnetized and non-magnetized fluids, and (iii) porous and non-porous media. Heat generation, heat absorption, velocity, and temperature slips are further considered to strengthen the problem statement. A mathematical model is constructed for the flow regime, and by using Lie symmetry analysis, an invariant group of transformations is constructed. The order of flow equations is dropped down by symmetry transformations and later solved by a shooting algorithm. Interesting physical quantities on porous surfaces are critically debated. It is believed that the problem analysis carried out in this work will help researchers to extend such ideas to other unsolved problems in the field of heat-transfer fluid science.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2434
Author(s):  
Ruixin Li ◽  
Lianzhong Li

In this paper, we employ the certain theory of Lie symmetry analysis to discuss the time-fractional Gardner equation with time-dependent coefficients. The Lie point symmetry is applied to realize the symmetry reduction of the equation, and then the power series solutions in some specific cases are obtained. By virtue of the fractional conservation theorem, the conservation laws are constructed.


2021 ◽  
Author(s):  
Xi-zhong Liu ◽  
Jun Yu

Abstract A nonlocal Boussinesq equation is deduced from the local one by using consistent correlated bang method. To study various exact solutions of the nonlocal Boussinesq equation, it is converted into two local equations which contain the local Boussinesq equation. From the N-soliton solutions of the local Boussinesq equation, the N-soliton solutions of the nonlocal Boussinesq equation are obtained, among which the (N = 2, 3, 4)-soliton solutions are analyzed with graphs. Some periodic and traveling solutions of the nonlocal Boussinesq equation are derived directly from known solutions of the local Boussinesq equation. Symmetry reduction solutions of the nonlocal Boussinesq equation are also obtained by using the classical Lie symmetry method.


Author(s):  
Feng Zhang ◽  
Yuru Hu ◽  
Xiangpeng Xin ◽  
Hanze Liu

In this paper, a [Formula: see text]-dimensional variable-coefficients Calogero–Bogoyavlenskii–Schiff (vcCBS) equation is studied. The infinitesimal generators and symmetry groups are obtained by using the Lie symmetry analysis on vcCBS. The optimal system of one-dimensional subalgebras of vcCBS is computed for determining the group-invariant solutions. On this basis, the vcCBS is reduced to two-dimensional partial differential equations (PDEs) by similarity reductions. Furthermore, the reduced PDEs are solved to obtain the two-soliton interaction solution, the soliton-kink interaction solution and some other exact solutions by the [Formula: see text]-expansion method. Moreover, it is shown that vcCBS is nonlinearly self-adjoint and then its conservation laws are calculated.


Author(s):  
Bohua Sun

In light of Liu \emph{at el.}'s original works, this paper revisits the solution of Burgers's nonlinear equation $u_t=a(u_x)^2+bu_{xx} $. The study found two exact and explicit solutions for groups $G_4$ and $G_6$, as well as a general solution. A numerical simulation is carried out. In the appendix a Maple code is provided


Sign in / Sign up

Export Citation Format

Share Document