Experimental investigation of two-phase flow distribution in plate-fin heat exchangers

2017 ◽  
Vol 120 ◽  
pp. 34-46 ◽  
Author(s):  
Zhe Zhang ◽  
Sunil Mehendale ◽  
JinJin Tian ◽  
YanZhong Li
Author(s):  
Liping Pang ◽  
Baomin Sun ◽  
Bo Wang

An experimental investigation was conducted to study the two-phase flow distributions in a horizontal cylindrical manifold with two radial inlets and 11 parallel channels. The effects of the different inlet conditions on two-phase flow distribution of parallel channels in the manifold were investigated. The flow rates of air and water in 11 channels were measured under symmetrical and unsymmetrical inlet conditions. Experimental results show that the air and water flow distributions of manifold at channels keep a stable flow ratio when two radial inlet conditions keep symmetrical. Water flow distribution has a significant variation and air flow distribution has a small change when two radial inlet conditions keep unsymmetrical and water superficial velocity increases at right inlet. Water and air flow distribution has a significant variation when two radial inlet conditions keep unsymmetrical and air superficial velocity decreases.


2010 ◽  
Author(s):  
Liping Pang ◽  
Baomin Sun ◽  
Bo Wang ◽  
Qiong Cao ◽  
Liejin Guo ◽  
...  

Author(s):  
Zhe Zhang ◽  
Sunil Mehendale ◽  
Shengnan Lv ◽  
Hui Yuan ◽  
JinJin Tian

Abstract Fluid flow maldistribution causes deterioration of heat transfer as well as pressure drop penalty in heat exchangers. A test bench was set up to investigate the effect of different header designs on air-water flow distribution in plate-fin heat exchangers (PFHX). Two-phase flow distribution was examined for air Reynolds numbers (ReG) of 28293542 and inlet qualities (x) of 46.3–64.0%. Two-phase flow distribution was seen to be more uneven in the heat exchanger in comparison with single-phase flow, the water distribution being more uneven than that of the air. For a fixed inlet quality, as the air flowrate was increased, the distribution of two-phase flow became increasingly nonuniform, showing a pattern similar to single-phase flow. Furthermore, the air distribution became more even, while the water flow became more unevenly distributed as the inlet quality increased. To mitigate the maldistribution, perforated plates were incorporated in the heat exchanger header. The improved headers significantly aided in distributing the two-phase flow more evenly. At ReG = 2829 and x = 46.3%, the heat exchanger effectiveness was expressed in terms of the unevenness in quality, Sx. The effectiveness decreased as the unevenness of the flow distribution was exacerbated, emphasizing the significance of uniform phase and flow distribution as a key element of heat exchanger design.


Sign in / Sign up

Export Citation Format

Share Document