scholarly journals Geometric uncertainty in patient-specific cardiovascular modeling with convolutional dropout networks

2021 ◽  
Vol 386 ◽  
pp. 114038
Author(s):  
Gabriel D. Maher ◽  
Casey M. Fleeter ◽  
Daniele E. Schiavazzi ◽  
Alison L. Marsden
2011 ◽  
Vol 10 (1) ◽  
pp. 52 ◽  
Author(s):  
Wee-Beng Tay ◽  
Yu-Heng Tseng ◽  
Liang-Yu Lin ◽  
Wen-Yih Tseng

2010 ◽  
Author(s):  
Wee-Beng Tay ◽  
Liang-Yu Lin ◽  
Wen-Yih Tseng ◽  
Yu-Heng Tseng ◽  
Jane W. Z. Lu ◽  
...  

2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Hongzhi Lan ◽  
Adam Updegrove ◽  
Nathan M. Wilson ◽  
Gabriel D. Maher ◽  
Shawn C. Shadden ◽  
...  

Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid–structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.


2013 ◽  
Vol 61 (S 01) ◽  
Author(s):  
M Kaur ◽  
N Sprunk ◽  
U Schreiber ◽  
R Lange ◽  
J Weipert ◽  
...  

2007 ◽  
Vol 46 (01) ◽  
pp. 38-42 ◽  
Author(s):  
V. Schulz ◽  
I. Nickel ◽  
A. Nömayr ◽  
A. H. Vija ◽  
C. Hocke ◽  
...  

SummaryThe aim of this study was to determine the clinical relevance of compensating SPECT data for patient specific attenuation by the use of CT data simultaneously acquired with SPECT/CT when analyzing the skeletal uptake of polyphosphonates (DPD). Furthermore, the influence of misregistration between SPECT and CT data on uptake ratios was investigated. Methods: Thirty-six data sets from bone SPECTs performed on a hybrid SPECT/CT system were retrospectively analyzed. Using regions of interest (ROIs), raw counts were determined in the fifth lumbar vertebral body, its facet joints, both anterior iliacal spinae, and of the whole transversal slice. ROI measurements were performed in uncorrected (NAC) and attenuation-corrected (AC) images. Furthermore, the ROI measurements were also performed in AC scans in which SPECT and CT images had been misaligned by 1 cm in one dimension beforehand (ACX, ACY, ACZ). Results: After AC, DPD uptake ratios differed significantly from the NAC values in all regions studied ranging from 32% for the left facet joint to 39% for the vertebral body. AC using misaligned pairs of patient data sets led to a significant change of whole-slice uptake ratios whose differences ranged from 3,5 to 25%. For ACX, the average left-to-right ratio of the facet joints was by 8% and for the superior iliacal spines by 31% lower than the values determined for the matched images (p <0.05). Conclusions: AC significantly affects DPD uptake ratios. Furthermore, misalignment between SPECT and CT may introduce significant errors in quantification, potentially also affecting leftto- right ratios. Therefore, at clinical evaluation of attenuation- corrected scans special attention should be given to possible misalignments between SPECT and CT.


1989 ◽  
Vol 28 (02) ◽  
pp. 69-77 ◽  
Author(s):  
R. Haux

Abstract:Expert systems in medicine are frequently restricted to assisting the physician to derive a patient-specific diagnosis and therapy proposal. In many cases, however, there is a clinical need to use these patient data for other purposes as well. The intention of this paper is to show how and to what extent patient data in expert systems can additionally be used to create clinical registries and for statistical data analysis. At first, the pitfalls of goal-oriented mechanisms for the multiple usability of data are shown by means of an example. Then a data acquisition and inference mechanism is proposed, which includes a procedure for controlling selection bias, the so-called knowledge-based attribute selection. The functional view and the architectural view of expert systems suitable for the multiple usability of patient data is outlined in general and then by means of an application example. Finally, the ideas presented are discussed and compared with related approaches.


1998 ◽  
Vol 37 (02) ◽  
pp. 171-178 ◽  
Author(s):  
B. Glassman ◽  
B. K. Rimer

AbstractIn more and more medical settings, physicians have less and less time to be effective communicators. To be effective, they need accurate, current information about their patients. Tailored health communications can facilitate positive patient-provider communications and foster behavioral changes conducive to health. Tailored communications (TCs) are produced for an individual based on information about that person. The focus of this report is on tailored print communications (TPCs). TPCs also enhance the process of evaluation, because they require a database and the collection of patient-specific information. We present a Tailoring Model for Primary Care that describes the steps involved in creating TPCs. We also provide examples from three ongoing studies in which TPCs are being used in order to illustrate the kinds of variables used for tailoring the products that are developed and how evaluation is conducted. TPCs offer opportunities to expand the reach of health professionals and to give personalized, individualized massages in an era of shrinking professional contact time.


Sign in / Sign up

Export Citation Format

Share Document