Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP)

2013 ◽  
Vol 2 (4) ◽  
pp. 461-474 ◽  
Author(s):  
Jiří Jaromír Klemeš ◽  
Zdravko Kravanja
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3839
Author(s):  
Leonid M. Ulyev ◽  
Maksim V. Kanischev ◽  
Roman E. Chibisov ◽  
Mikhail A. Vasilyev

This paper presents both the results of a study of the existing heat exchanger network (HEN) of an industrial unit for ethylbenzene (EB) production by the alkylation of benzene with ethylene, and an analysis of four different HEN retrofit projects carried out using process integration methods. The project of modernization of HEN was carried out using classical methods of Pinch analysis. For this case, the value of ΔTmin is determined, which is limited by the technological conditions of the process. Additionally, two different heat pump (HP) integration options and the joint retrofit Pinch project with HP integration are under consideration. The economic analysis of each of the projects was carried out. It is shown that the best results will be obtained when implementing the joint project. As a result, steam consumption will be reduced by 34% and carbon dioxide emissions will be decreased by the same amount.


Author(s):  
Nasser A. Al-Azri

Pinch analysis is a methodology used for minimizing energy and material consumption in engineering processes. It features the identification of the pinch point and minimum external resources. Two common established approaches are used to identify these features: the graphical approach and the algebraic method, which are time-consuming and susceptible to human and calculation errors when used for a large number of process streams. This paper presents an algorithmic procedure to heat integration based on the algebraic approach. The algorithmic procedure is explained in a didactical manner to introduce pinch analysis for students and novice researchers in the field. Matlab code is presented, which is also intended for developing a Matlab toolbox for process integration.  


2007 ◽  
Vol 27 (5-6) ◽  
pp. 886-893 ◽  
Author(s):  
Sung-Geun Yoon ◽  
Jeongseok Lee ◽  
Sunwon Park

Sign in / Sign up

Export Citation Format

Share Document