Founder effects on sex determination systems in invasive social insects

2021 ◽  
Vol 46 ◽  
pp. 31-38
Author(s):  
Thomas Hagan ◽  
Rosalyn Gloag
2008 ◽  
Vol 363 (1505) ◽  
pp. 2891-2899 ◽  
Author(s):  
Heike Feldhaar ◽  
Susanne Foitzik ◽  
Jürgen Heinze

The extraordinary lifelong partner commitment in social insects is expected to increase choosiness in both sexes and therefore to be associated with particularly low hybridization frequencies. Yet, more and more studies reveal that in many ant taxa hybrids are surprisingly common, with up to half of all female sexuals receiving sperm from allospecific males in extreme cases. In a few ant species, hybridization has led to the evolution of reproductively isolated new lineages with a bizarre system of genetic caste differentiation: colonies produce hybrid workers and pure-lineage female sexuals. This requires that colonies either contain multiple queens or that queens mate multiple times. In most other cases, hybridization appears to be an evolutionary dead end and fertile hybrid queens are rarely found. In such cases, haplodiploid sex determination appears to decrease the costs of mating with an allospecific male. As long as hybrid workers are viable, a cross-mated queen can partially rescue its fitness by producing males from unfertilized eggs. Mating with an allospecific partner may thus be an option for queens when conspecific mates are not available. The morphological similarity of most ant males, perhaps resulting from the lack of sexual conflict, may similarly contribute to the commonness of hybridization.


Nature ◽  
1996 ◽  
Vol 379 (6562) ◽  
pp. 201-201
Keyword(s):  

1894 ◽  
Vol 38 (987supp) ◽  
pp. 15780-15781
Author(s):  
C. V. Riley
Keyword(s):  

2019 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Abyt Ibraimov

In many animals, including us, the genetic sex is determined at fertilization by sex chromosomes. Seemingly, the sex determination (SD) in human and animals is determined by the amount of constitutive heterochromatin on Y chromosome via cell thermoregulation. It is assumed the medulla and cortex tissue cells in the undifferentiated embryonic gonads (UEG) differ in vulnerability to the increase of the intracellular temperature. If the amount of the Y chromosome constitutive heterochromatin is enough for efficient elimination of heat difference between the nucleus and cytoplasm in rapidly growing UEG cells the medulla tissue survives. Otherwise it doomed to degeneration and a cortex tissue will remain in the UEG. Regardless of whether our assumption is true or not, it remains an open question why on Y chromosome there is a large constitutive heterochromatin block? What is its biological meaning? Does it relate to sex determination, sex differentiation and development of secondary sexual characteristics? If so, what is its mechanism: chemical or physical? There is no scientifically sound answer to these questions.


2014 ◽  
Vol 13 (1) ◽  
pp. 50-59
Author(s):  
A NisreenYasirJasim ◽  
Tahir A. Fahid ◽  
Talib Ahmed Jaayid

2012 ◽  
Vol 3 (1) ◽  
pp. 384-386
Author(s):  
Dr. Sudarshan Gupta ◽  
◽  
Dr. Bhadresh Vaghela ◽  
Dr. Deepak Howale ◽  
Dr. Mehul Tandel

Sign in / Sign up

Export Citation Format

Share Document