circadian rhythms
Recently Published Documents


TOTAL DOCUMENTS

5009
(FIVE YEARS 883)

H-INDEX

144
(FIVE YEARS 16)

Author(s):  
Rujia Luo ◽  
Yutao Huang ◽  
Huan Ma ◽  
Jinhu Guo

Intrinsic circadian clocks generate circadian rhythms of physiology and behavior, which provide the capabilities to adapt to cycling environmental cues that result from the self-rotation of the Earth. Circadian misalignment leads to deleterious impacts on adaptation and health in different organisms. The environmental cues on the interplanetary journey to and on Mars dramatically differ from those on Earth. These differences impose numerous adaptive challenges, including challenges for humans’ circadian clock. Thus, adaptation of circadian rhythms to the Martian environment is a prerequisite for future landing and dwelling on Mars. Here, we review the progress of studies associated with the influence of the Martian environment on circadian rhythms and propose directions for further study and potential strategies to improve the adaptation of the circadian clock for future Mars missions.


2022 ◽  
Author(s):  
Yanli Xiang ◽  
Thomas Sapir ◽  
Pauline Rouillard ◽  
Marina Ferrand ◽  
Jose M Jimenez-Gomez

Many biological processes follow circadian rhythmicity and are controlled by the circadian clock. Predictable environmental changes such as seasonal variation in photoperiod can modulate circadian rhythms, allowing organisms to adjust to the time of the year. Modification of circadian clocks is especially relevant in crops to enhance their cultivability in specific regions by changing their sensibility to photoperiod. In tomato, the appearance of mutations in EMPFINDLICHER IM DUNKELROTEN LICHT 1 (EID1, Solyc09g075080) and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 2 (LNK2, Solyc01g068560) during domestication delayed its circadian rhythms, and allowed its expansion outside its equatorial origin. Here we study how variation in circadian rhythms in tomato affects its perception of photoperiod. To do this, we create near isogenic lines carrying combinations of wild alleles of EID1 and LNK2 and perform transcriptomic profiling under two different photoperiods. We observe that EID1, but not LNK2, has a large effect on the tomato transcriptome and its response to photoperiod. This large effect of EID1 is likely a consequence of the global phase shift elicited by this gene in tomato's circadian rhythms.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12718
Author(s):  
RongXiu Liu ◽  
Naresh Vasupalli ◽  
Dan Hou ◽  
Antony Stalin ◽  
Hantian Wei ◽  
...  

With-no-lysine (WNK) kinases play vital roles in abiotic stress response, circadian rhythms, and regulation of flowering time in rice, Arabidopsis, and Glycine max. However, there are no previous reports of WNKs in the Bambusoideae, although genome sequences are available for diploid, tetraploid, and hexaploid bamboo species. In the present study, we identified 41 WNK genes in five bamboo species and analysed gene evolution, phylogenetic relationship, physical and chemical properties, cis-elements, and conserved motifs. We predicted the structure of PeWNK proteins of moso bamboo and determined the exposed, buried, structural and functional amino acids. Real-time qPCR analysis revealed that PeWNK5, PeWNK7, PeWNK8, and PeWNK11 genes are involved in circadian rhythms. Analysis of gene expression of different organs at different developmental stages revealed that PeWNK genes are tissue-specific. Analysis of various abiotic stress transcriptome data (drought, salt, SA, and ABA) revealed significant gene expression levels in all PeWNKs except PeWNK11. In particular, PeWNK8 and PeWNK9 were significantly down- and up-regulated, respectively, after abiotic stress treatment. A co-expression network of PeWNK genes also showed that PeWNK2, PeWNK4, PeWNK7, and PeWNK8 were co-expressed with transcriptional regulators related to abiotic stress. In conclusion, our study identified the PeWNKs of moso bamboo involved in circadian rhythms and abiotic stress response. In addition, this study serves as a guide for future functional genomic studies of the WNK genes of the Bambusoideae.


2022 ◽  
pp. 074873042110694
Author(s):  
Ciearra B. Smith ◽  
Vincent van der Vinne ◽  
Eleanor McCartney ◽  
Adam C. Stowie ◽  
Tanya L. Leise ◽  
...  

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein ( Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;Dbp KI/+ “liver reporter” mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.


2022 ◽  
Author(s):  
David Cuitun-Coronado ◽  
Hannah Rees ◽  
Anthony Hall ◽  
Luiza Lane de Barros Dantas ◽  
Antony N Dodd

Circadian rhythms are 24-hour biological cycles that align metabolism, physiology and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to photochemistry in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of several measures of photosynthetic biochemistry (delayed fluorescence, the rate of photosynthetic electron transport, and non-photochemical quenching of chlorophyll fluorescence). Second, we identified that light-dark cycles increase the robustness of the 24 h cycles of photosynthesis in M. polymorpha, which might be due to the masking of underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis might be well-conserved amongst terrestrial plants.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Jeremy Hunt ◽  
Elizabeth J. Coulson ◽  
Rajendram Rajnarayanan ◽  
Henrik Oster ◽  
Aleksandar Videnovic ◽  
...  

AbstractThe use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson’s disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson’s disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson’s disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson’s disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson’s reflect the sleep and circadian abnormalities of Parkinson’s disease observed in the clinic.


2022 ◽  
Vol 12 ◽  
Author(s):  
Riccardo Cremascoli ◽  
Davide Sparasci ◽  
Gianluca Giusti ◽  
Stefania Cattaldo ◽  
Elisa Prina ◽  
...  

It is shown that the circadian system is affected in patients with Alzheimer’s disease (AD) even at an early stage of the disease and that such dysfunction may be detrimental to sleep, mood, and cognitive functioning. Light is a strong central modulator of the circadian rhythms and is potentially beneficial to mood and cognitive functioning via a direct effect or indirectly via its modulating effects on circadian rhythms. This study focuses on tracking the effect of light therapy on sleep quality, mood, and cognition in AD of mild/moderate severity. We performed a single-blind randomized controlled trial to investigate the effects of a light therapy treatment tailored to the individual circadian phase as measured by dim light melatonin onset (DLMO). Such a treatment induced an objective circadian phase shift consistent with the melatonin phase response curve to light exposure, led to a shortening of the phase angle DLMO-falling asleep time, and was associated with an improvement in subjective sleep quality and cognitive performance.


2022 ◽  
Vol 23 (1) ◽  
pp. 504
Author(s):  
Xuemin Peng ◽  
Rongping Fan ◽  
Lei Xie ◽  
Xiaoli Shi ◽  
Kun Dong ◽  
...  

Type 2 diabetes mellitus (T2DM) patients are at a higher risk of developing Alzheimer’s disease (AD). Mounting evidence suggests the emerging important role of circadian rhythms in many diseases. Circadian rhythm disruption is considered to contribute to both T2DM and AD. Here, we review the relationship among circadian rhythm disruption, T2DM and AD, and suggest that the occurrence and progression of T2DM and AD may in part be associated with circadian disruption. Then, we summarize the promising therapeutic strategies targeting circadian dysfunction for T2DM and AD, including pharmacological treatment such as melatonin, orexin, and circadian molecules, as well as non-pharmacological treatments like light therapy, feeding behavior, and exercise.


Author(s):  
Kévin Tartour ◽  
Kiran Padmanabhan

Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior—go hand in hand with 24 h rhythms in genome topology.


Sign in / Sign up

Export Citation Format

Share Document