A Runge–Kutta discontinuous Galerkin method for the Euler equations

2005 ◽  
Vol 34 (3) ◽  
pp. 375-398 ◽  
Author(s):  
Huazhong Tang ◽  
Gerald Warnecke
2016 ◽  
Vol 9 (1) ◽  
pp. 73-91 ◽  
Author(s):  
Haitian Lu ◽  
Jun Zhu ◽  
Chunwu Wang ◽  
Ning Zhao

AbstractIn this paper, we extend using the Runge-Kutta discontinuous Galerkin method together with the front tracking method to simulate the compressible two-medium flow on unstructured meshes. A Riemann problem is constructed in the normal direction in the material interfacial region, with the goal of obtaining a compact, robust and efficient procedure to track the explicit sharp interface precisely. Extensive numerical tests including the gas-gas and gas-liquid flows are provided to show the proposed methodologies possess the capability of enhancing the resolutions nearby the discontinuities inside of the single medium flow and the interfacial vicinities of the two-medium flow in many occasions.


PAMM ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 953-954 ◽  
Author(s):  
Juan Pablo Gallego-Valencia ◽  
Johannes Löbbert ◽  
Steffen Müthing ◽  
Peter Bastian ◽  
Christian Klingenberg ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987490
Author(s):  
Muhammad Rehan Saleem ◽  
Ubaid Ahmed Nisar ◽  
Shamsul Qamar

This article deals with the numerical study of two-phase shallow flow model describing the mixture of fluid and solid granular particles. The model under investigation consists of coupled mass and momentum equations for solid granular material and fluid particles through non-conservative momentum exchange terms. The non-conservativity of model equations poses major challenges for any numerical scheme, such as well balancing, positivity preservation, accurate approximation of non-conservative terms, and achievement of steady-state conditions. Thus, in order to approximate the present model an accurate, well-balanced, robust, and efficient numerical scheme is required. For this purpose, in this article, Runge–Kutta discontinuous Galerkin method is applied successfully for the first time to solve the model equations. Several test problems are also carried out to check the performance and accuracy of our proposed numerical method. To compare the results, the same model is solved by staggered central Nessyahu–Tadmor scheme. A good comparison is found between two schemes, but the results obtained by Runge–Kutta discontinuous Galerkin scheme are found superior over the central Nessyahu–Tadmor scheme.


Sign in / Sign up

Export Citation Format

Share Document