Direct numerical simulations of localized disturbances in pipe Poiseuille flow

2010 ◽  
Vol 39 (6) ◽  
pp. 926-935 ◽  
Author(s):  
Per-Olov Åsén ◽  
Gunilla Kreiss ◽  
Dietmar Rempfer
2022 ◽  
Vol 934 ◽  
Author(s):  
C.A. Klettner ◽  
F.T. Smith

The Poiseuille flow (centreline velocity $U_c$ ) of a fluid (kinematic viscosity $\nu$ ) past a circular cylinder (radius $R$ ) in a Hele-Shaw cell (height $2h$ ) is traditionally characterised by a Stokes flow ( $\varLambda =(U_cR/\nu )(h/R)^2 \ll 1$ ) through a thin gap ( $\epsilon =h/R \ll 1$ ). In this work we use asymptotic methods and direct numerical simulations to explore the parameter space $\varLambda$ – $\epsilon$ when these conditions are not met. Starting with the Navier–Stokes equations and increasing $\varLambda$ (which corresponds to increasing inertial effects), four successive regimes are identified, namely the linear regime, nonlinear regimes I and II in the boundary layer (the ‘ inner’ region) and a nonlinear regime III in both the inner and outer region. Flow phenomena are studied with extensive comparisons made between reduced calculations, direct numerical simulations and previous analytical work. For $\epsilon =0.01$ , the limiting condition for a steady flow as $\varLambda$ is increased is the instability of the Poiseuille flow. However, for larger $\epsilon$ , this limit is at a much higher $\varLambda$ , resulting in a laminar separation bubble, of size ${O}(h)$ , forming for a certain range of $\epsilon$ at the back of the cylinder, where the azimuthal location was dependent on $\epsilon$ . As $\epsilon$ is increased to approximately 0.5, the secondary flow becomes increasingly confined adjacent to the sidewalls. The results of the analysis and numerical simulations are summarised in a plot of the parameter space $\varLambda$ – $\epsilon$ .


Sign in / Sign up

Export Citation Format

Share Document