transition regime
Recently Published Documents


TOTAL DOCUMENTS

428
(FIVE YEARS 49)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 60 (2) ◽  
Author(s):  
Vinícius Phillipe de Albuquerquemello ◽  
Rennan Kertlly de Medeiros ◽  
Diego Pitta de Jesus ◽  
Felipe Araujo de Oliveira

Abstract: Given the relevance of corn for food and fuel industries, analysts and scholars are constantly comparing the forecasting accuracy of econometric models. These exercises test not only for the use of new approaches and methods, but also for the addition of fundamental variables linked to the corn market. This paper compares the accuracy of different usual models in financial macro-econometric literature for the period between 1995 and 2017. The main contribution lies in the use of transition regime models, which accommodate structural breaks and perform better for corn price forecasting. The results point out that the best models as those which consider not only the corn market structure, or macroeconomic and financial fundamentals, but also the non-linear trend and transition regimes, such as threshold autoregressive models.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012082
Author(s):  
D A Shvetsov ◽  
A N Pavlenko ◽  
A E Brester ◽  
V I Zhukov

Abstract The paper presents the results of the study of evaporation and boiling in a thin horizontal layer of liquid on microstructured surfaces in a wide range of changes in pressure. It is found that the thermal conductivity of materials of microstructured surfaces significantly affects the mechanism of steam removal from the pores and circulation of liquid along the heat transfer surface. It is determined that the pressure change leads to three regimes of heat transfer: evaporation, transition regime, and bubble boiling. The lowest values of the heat transfer coefficients and CHF were obtained in the transition regime; the highest ones were obtained in the bubble regime on both surfaces. Due to the higher thermal conductivity, the higher heat transfer coefficients and CHF were obtained on the bronze coating than on stainless steel over the entire pressure range.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3882
Author(s):  
Georgios A. Kelesidis ◽  
M. Reza Kholghy

Nanoparticle agglomeration in the transition regime (e.g. at high pressures or low temperatures) is commonly simulated by population balance models for volume-equivalent spheres or agglomerates with a constant fractal-like structure. However, neglecting the fractal-like morphology of agglomerates or their evolving structure during coagulation results in an underestimation or overestimation of the mean mobility diameter, dm, by up to 93 or 49%, repectively. Here, a monodisperse population balance model (MPBM) is interfaced with robust relations derived by mesoscale discrete element modeling (DEM) that account for the realistic agglomerate structure and size distribution during coagulation in the transition regime. For example, the DEM-derived collision frequency, β, for polydisperse agglomerates is 82 ± 35% larger than that of monodisperse ones and in excellent agreement with measurements of flame-made TiO2 nanoparticles. Therefore, the number density, NAg, mean, dm, and volume-equivalent diameter, dv, estimated here by coupling the MPBM with this β and power laws for the evolving agglomerate morphology are on par with those obtained by DEM during the coagulation of monodisperse and polydisperse primary particles at pressures between 1 and 5 bar. Most importantly, the MPBM-derived NAg, dm, and dv are in excellent agreement with the data for soot coagulation during low temperature sampling. As a result, the computationally affordable MPBM derived here accounting for the realistic nanoparticle agglomerate structure can be readily interfaced with computational fluid dynamics in order to accurately simulate nanoparticle agglomeration at high pressures or low temperatures that are present in engines or during sampling and atmospheric aging.


Sign in / Sign up

Export Citation Format

Share Document