A three-dimensional volume of fluid & level set (VOSET) method for incompressible two-phase flow

2015 ◽  
Vol 118 ◽  
pp. 293-304 ◽  
Author(s):  
Kong Ling ◽  
Zhao-Hui Li ◽  
Dong-Liang Sun ◽  
Ya-Ling He ◽  
Wen-Quan Tao
2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Jianjian Xin ◽  
Fulong Shi ◽  
Qiu Jin ◽  
Lin Ma

Abstract A three-dimensional (3D) gradient-augmented level set (GALS) two-phase flow model with a pretreated reinitialization procedure is developed to simulate violent sloshing in a cuboid tank. Based on a two-dimensional (2D) GALS method, 3D Hermite, and 3D Lagrange polynomial schemes are derived to interpolate the level set function and the velocity field at arbitrary positions over a cell, respectively. A reinitialization procedure is performed on a 3D narrow band to treat the strongly distorted interface and improve computational efficiency. In addition, an identification-correction technique is proposed and incorporated into the reinitialization procedure to treat the tiny droplet which can distort the free surface shape, even lead to computation failure. To validate the accuracy of the present GALS method and the effectiveness of the proposed identification-correction technique, a 3D velocity advection case is first simulated. The present method is validated to have better mass conservation property than the classical level set and original GALS methods. Also, distorted and thin interfaces are well captured on all grid resolutions by the present GALS method. Then, sloshing under coupled surge and sway excitation, sloshing under rotational excitation are simulated. Good agreements are obtained when the present wave and pressure results are compared with the experimental and numerical results. In addition, the highly nonlinear free surface is observed, and the relationship between the excitation frequency and the impulsive pressure is investigated.


2017 ◽  
Vol 345 ◽  
pp. 665-686 ◽  
Author(s):  
C. Bilger ◽  
M. Aboukhedr ◽  
K. Vogiatzaki ◽  
R.S. Cant

Author(s):  
Gae¨l Gue´don ◽  
Emanuela Colombo ◽  
Fabio Inzoli

Several engineering plants and components, such as nuclear reactors, boilers, bubble columns, chemical reactors or oil/gas wells may be characterized by two-phase flows. Appropriate and safe operation of these systems may be supported by the accurate prediction of the multiphase flow pattern with consistent estimation of the void fraction and flooding phenomenon. A preliminary approach for modeling flow patterns in countercurrent two-phase flows in vertical systems, based on the volume-of-fluid (VOF) method, is here presented. The general objective of the study is to investigate the feasibility of large scale two-phase systems simulations using the VOF method. The specific objective is to provide a first set of qualitative information about the fluid dynamics structures in this flow at specific operating conditions. Three-dimensional simulations are performed using a finite volume commercial CFD code. Validation of the numerical approach is achieved with experimental data taken from literature for typical air-water flows in bubble columns. The interaction of the downward water recirculation with the bubbles of air is indeed representative of a bubbly countercurrent two-phase flow and therefore may be a valuable test case. The use of the VOF method is here privileged, since no further closure relations are needed for exchange coefficients between the continuous and dispersed phases, and for breakup and coalescence of bubbles/drops. The validated model is therefore most likely applicable in complex situations where the flow behavior is unknown. Finally a specific analysis of a countercurrent two-phase flow is presented with the objective of simulating the flow within an industrial pipe where two immiscible fluids, with different density are injected. A fluid “A” is injected at the bottom of the pipe and it is supposed to exit the pipe in the upper part. A fluid “B”, immiscible in “A”, is injected at the top of the pipe in countercurrent and it is supposed not to influence the path of fluid “A” from inlet to the exit. Fluid “B” may be used for reacting somehow with fluid “A”, but in this paper only the fluid dynamic condition is considered.


Author(s):  
Mamta Raju Jotkar ◽  
Daniel Rodriguez ◽  
Bruno Marins Soares

2014 ◽  
Vol 100 ◽  
pp. 138-154 ◽  
Author(s):  
Lanhao Zhao ◽  
Jia Mao ◽  
Xin Bai ◽  
Xiaoqing Liu ◽  
Tongchun Li ◽  
...  

2002 ◽  
Vol 124 (3) ◽  
pp. 481-488 ◽  
Author(s):  
M. Burger ◽  
G. Klose ◽  
G. Rottenkolber ◽  
R. Schmehl ◽  
D. Giebert ◽  
...  

Polydisperse sprays in complex three-dimensional flow systems are important in many technical applications. Numerical descriptions of sprays are used to achieve a fast and accurate prediction of complex two-phase flows. The Eulerian and Lagrangian methods are two essentially different approaches for the modeling of disperse two-phase flows. Both methods have been implemented into the same computational fluid dynamics package which is based on a three-dimensional body-fitted finite volume method. Considering sprays represented by a small number of droplet starting conditions, the Eulerian method is clearly superior in terms of computational efficiency. However, with respect to complex polydisperse sprays, the Lagrangian technique gives a higher accuracy. In addition, Lagrangian modeling of secondary effects such as spray-wall interaction enhances the physical description of the two-phase flow. Therefore, in the present approach the Eulerian and the Lagrangian methods have been combined in a hybrid method. The Eulerian method is used to determine a preliminary solution of the two-phase flow field. Subsequently, the Lagrangian method is employed to improve the accuracy of the first solution using detailed sets of initial conditions. Consequently, this combined approach improves the overall convergence behavior of the simulation. In the final section, the advantages of each method are discussed when predicting an evaporating spray in an intake manifold of an internal combustion engine.


Sign in / Sign up

Export Citation Format

Share Document