surface shape
Recently Published Documents


TOTAL DOCUMENTS

1206
(FIVE YEARS 281)

H-INDEX

41
(FIVE YEARS 7)

Author(s):  
А.Н. Гречухин ◽  
В.В. Куц ◽  
П.С. Щербаков

Статья посвящена изучению вопросов управления процессом аддитивного формообразования изделий. Представлены результаты исследования процесса аддитивного формообразования поверхности электрической дугой в среде защитного газа. Проведен анализ погрешности формы поверхностей, полученных с различным заполнением слоев. Подтверждено экспериментально, что такие параметры процесса, как ориентация слоев, коэффициент их перекрытия являются значимыми. Так, погрешность формообразования образцов наплавки слой на слой в вертикальном направлении выше по сравнению с другими способами наплавки, реализованными в эксперименте. Средние значения погрешности формы образцов составляют 0,75 мм, 0,88 мм, 1,15 мм, соответственно, для способов наплавки слой к слою на горизонтальную поверхность с коэффициентом перекрытия 0,3, слой к слою на горизонтальную поверхность с коэффициентом перекрытия 0,5, слой на слой в вертикальном направлении. Максимальные значения погрешности определены на уровне 0,85 мм, 1,2 мм, 1,5 мм для соответствующих способов наплавки, реализованных в эксперименте. Таким образом, пространственная ориентация слоев, а также коэффициент перекрытия слоев являются значимыми, оказывают влияние на численное значение погрешности формы получаемой поверхности, должны быть учтены при проектировании алгоритмов разделения на слои, их заполнения при аддитивном формообразовании электрической дугой в среде защитного газа The article is devoted to the study of the issues of managing the process of additive shaping of products. The paper presents the results of a study of the process of additive surface shaping by an electric arc in a protective gas medium. We analyzed the error of the shape of the surfaces obtained with different filling layers. We confirmed experimentally that such process parameters as the orientation of the layers, their overlap coefficient are significant. Thus, the error of forming samples of surfacing layer on layer in the vertical direction is higher compared to other methods of surfacing implemented in the experiment. The average values of the sample shape error are 0.75 mm, 0.88 mm, 1.15 mm, respectively, for methods of surfacing layer to layer on a horizontal surface with an overlap coefficient of 0.3, layer to layer on a horizontal surface with an overlap coefficient of 0.5, layer to layer in the vertical direction. The maximum error values are determined at the level of 0.85 mm, 1.2 mm, 1.5 mm for the corresponding surfacing methods implemented in the experiment. Thus, the spatial orientation of the layers, as well as the overlap coefficient of the layers, are significant, affect the numerical value of the shape error of the resulting surface, should be taken into account when designing algorithms for dividing into layers, filling them with additive shaping by an electric arc in a protective gas medium


2021 ◽  
Vol 13 (4) ◽  
pp. 70
Author(s):  
Ichirou Yamaguchi

In digital holography recording as reconstruction of holograms are performed digitally by modern photonic devices to increase of optical non-contacting measurements of various kinds of surfaces including both specular and rough surfaces. In this article we discusses these features of digital holography using phase shifting techniques that has much extended its capabilities. Full Text: PDF ReferencesG. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio, "Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses", Appl. Opt. 13, 2693 (1974). CrossRef I. Yamaguchi, T. Zhang, "Phase-shifting digital holography", Opt. Lett. 22, 1268 (1997). CrossRef F. Zhang, I. Yamaguchi, L.P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification", Opt. Lett. 29, 1668 (2004). CrossRef I. Yamaguchi, "Holography, speckle, and computers", Optics and Lasers in Engineering 39, 411 (2003). CrossRef I. Yamaguchi, M. Yokota, "Speckle noise suppression in measurement by phase-shifting digital holography", Opt. Eng. 48 085602 (2009). CrossRef I. Yamaguchi, J. Kato, S. Ohta, "Surface Shape Measurement by Phase-Shifting Digital Holography", Opt. Rev. 8, 85 (2001). CrossRef I. Yamaguchi, J. Kato, H. Matsuzaki, "Measurement of surface shape and deformation by phase-shifting image digital holography", Opt. Eng. 42, 1267 (2003). CrossRef F. Zhang, J.D.R. Valera, I. Yamaguchi, M. Yokota, G. Mills, "Vibration Analysis by Phase Shifting Digital Holography", Opt. Rev. 11, 5 (2004). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 73
Author(s):  
Pascal Picart

Digital holography, and especially digital holographic interferometry, is a powerful approach for the characterization of modifications at the surface or in the volume of objects. Nevertheless, the reconstructed phase data from holographic interferometry is corrupted by the speckle noise. In this paper, we discuss on recent advances in speckle decorrelation noise removal. Two main topics are considered. The first one presents recent results in modelling the decorrelation noise in digital Fresnel holography. Especially the anisotropy of the decorrelation noise is established. The second topic presents a new approach for speckle de-noising using deep convolution neural networks. Full Text: PDF ReferencesP. Picart (ed.), New techniques in digital holography (John Wiley & Sons, 2015). CrossRef T.M. Biewer, J.C. Sawyer, C.D. Smith, C.E. Thomas, "Dual laser holography for in situ measurement of plasma facing component erosion (invited)", Rev. Sci. Instr. 89, 10J123 (2018). CrossRef M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, C. Nemeth, D. Carl, "Inline application of digital holography [Invited]", Appl. Opt. 58(34), G120 (2019). CrossRef M.P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, D. Doyle, "Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited]", Appl. Opt. 52(1), A102 (2013). CrossRef E. Meteyer, F. Foucart, M. Secail-Geraud, P. Picart, C. Pezerat, "Full-field force identification with high-speed digital holography", Mech. Syst. Signal Process. 164 (2022). CrossRef L. Lagny, M. Secail-Geraud, J. Le Meur, S. Montresor, K. Heggarty, C. Pezerat, P. Picart, "Visualization of travelling waves propagating in a plate equipped with 2D ABH using wide-field holographic vibrometry", J. Sound Vib. 461 114925 (2019). CrossRef L. Valzania, Y. Zhao, L. Rong, D. Wang, M. Georges, E. Hack, P. Zolliker, "THz coherent lensless imaging", Appl. Opt. 58, G256 (2019). CrossRef V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, M. Paturzo, P. Picart, B. Javidi, P. Ferraro, "Strategies for reducing speckle noise in digital holography", Light: Sci. Appl. 7(1), 1 (2018). CrossRef V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, P. Ferraro, "Quasi noise-free digital holography", Light. Sci. Appl. 5(9), e16142 (2016). CrossRef R. Horisaki, R. Takagi, J. Tanida, "Deep-learning-generated holography", Appl. Opt. 57(14), 3859 (2018). CrossRef E. Meteyer, F. Foucart, C. Pezerat, P. Picart, "Modeling of speckle decorrelation in digital Fresnel holographic interferometry", Opt. Expr. 29(22), 36180 (2021). CrossRef M. Piniard, B. Sorrente, G. Hug, P. Picart, "Theoretical analysis of surface-shape-induced decorrelation noise in multi-wavelength digital holography", Opt. Expr. 29(10), 14720 (2021). CrossRef P. Picart, S. Montresor, O. Sakharuk, L. Muravsky, "Refocus criterion based on maximization of the coherence factor in digital three-wavelength holographic interferometry", Opt. Lett. 42(2), 275 (2017). CrossRef P. Picart, J. Leval, "General theoretical formulation of image formation in digital Fresnel holography", J. Opt. Soc. Am. A 25, 1744 (2008). CrossRef S. Montresor, P. Picart, "Quantitative appraisal for noise reduction in digital holographic phase imaging", Opt. Expr. 24(13), 14322 (2016). CrossRef S. Montresor, M. Tahon, A. Laurent, P. Picart, "Computational de-noising based on deep learning for phase data in digital holographic interferometry", APL Photonics 5(3), 030802 (2020). CrossRef M. Tahon, S. Montresor, P. Picart, "Towards Reduced CNNs for De-Noising Phase Images Corrupted with Speckle Noise", Photonics 8(7), 255 (2021). CrossRef E. Meteyer, S. Montresor, F. Foucart, J. Le Meur, K. Heggarty, C. Pezerat, P. Picart, "Lock-in vibration retrieval based on high-speed full-field coherent imaging", Sci. Rep. 11(1), 1 (2021). CrossRef


2021 ◽  
Author(s):  
Yongchao Xu ◽  
Chen Lin ◽  
Qianting Wang ◽  
Charlesming Zheng ◽  
Youji Zhan ◽  
...  

Abstract A novel flexible polishing process has been developed for sapphire wafer by using a polishing plate with rigid-flexible composite structure to satisfy the demands of excellent surface shape accuracy and high surface topography quality simultaneously. This new polishing plate was fabricated by alternately casting and curing the ring structure of soft and hard unsaturated resins. It is found that the overall stiffness of the polishing plate is improved due to the “hard support frame” of rigid-flexible polishing plate, as well as the ability of removal selectivity of the polishing plate is strengthened. The topography quality and shape accuracy of sapphire wafer polished by presented novel polishing process have been compared with those polished by conventional flexible polishing, respectively. Both experiment and simulation results are shown that the surface roughness and topographical variations of sapphire wafer polished by the novel rigid-flexible composite structure polishing plate have been greatly improved. Comparing with the conventional flexible polishing, the surface shape accuracy of the sapphire wafer polished by the presented novel polishing process can be improved by 54.1%.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 35
Author(s):  
Andrij Milenin ◽  
Mirosław Wróbel ◽  
Piotr Kustra ◽  
Jiří Němeček

This paper examines the surface roughness of a thin brass wire (140–200 microns in diameter) after two dieless drawing (DD) processes, i.e., conventional dieless drawing (CDD) and incremental dieless drawing (IDD). In incremental dieless drawing, small increments in deformation were applied in several passes. It has been proven that the IDD process not only has a greater efficiency but also enables obtaining a wire with significantly lower surface roughness. The explanation for these effects is based on the results of the numerical modeling of both compared processes. The developed numerical model takes into consideration the initial roughness of the wire surface, shape and dimensions of grains, and their diversified mechanical properties. Nanoindentation measurements, microstructure, and plastometric studies allowed us to find the effective flow stress distribution in the grains. The IDD process was found to be much more stable and develop a much more uniform distribution of grain strain than the CDD process. More homogeneous deformation results in surface roughness reduction. Approximately 25–30% reduction in surface roughness of the wire produced by the IDD process was predicted by simulations and confirmed experimentally.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 592
Author(s):  
Songsong Zhang ◽  
Haisong Huang

Fringe projection is a non-contact optical method that is widely used in the optical precision measurement of complex stepped surfaces. However, the accuracy of the fringe phase extraction employed has a direct impact on the measurement precision of the surface shape. Where phase-shifting measurement is used, the classical equal step phase extraction algorithm can only be used to measure simple and smooth surfaces, and leads to measurement errors on complex stepped surfaces, which affects the accuracy of the phase extraction. In addition, the iterative process lasts for a long time, resulting in a low efficiency. This paper proposes a step-by-step phase-shifting extraction algorithm based on selective sampling to measure the contour of the stepped surface. Firstly, the fringe pattern is sampled at equal intervals to reduce the iterative calculation time. Finally, the accurate measurement phase is calculated by the alternating iteration method. The phase extraction accuracy and iteration times are compared in experimental measurements between classical iterative algorithms such as four-step phase-shifting algorithms and the variable phase shift phase interpolation algorithm based on selective sampling. It is shown that the variable frequency phase-shifting extraction algorithm based on selective sampling has a shorter operation time, smaller error, and higher accuracy than the traditional iterative algorithm in fringe projection measuring complex stepped surfaces.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Jay Prakash Singh ◽  
Karthikeyan Rajagopal ◽  
Binoy Krishna Roy

The paper reports a modified 4D autonomous hyperchaotic system with an unusual characteristic. The modified system exhibits dissipative behavior for some ranges of a parameter and conservative behavior for the other ranges of the same parameter. Thus, there is a switching between dissipative and conservative behaviors of the proposed system. In the conservative range, the system exhibits chaotic orbit. Again in the dissipative range, the system, with its considered sets of parameters, exhibits strange attractors. Thus, both the dissipative and conservative behaviors exist in the same system with the switching of its parameter. Such behavior of a system is rarely reported in the literature. Further, the equilibria of the system are located on the surface-shape. The proposed system is implemented and simulated using Field Programmable Gate Array (FPGA) and Multisim simulation softwares.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 354
Author(s):  
Yanchao Fan ◽  
Deyi Dong ◽  
Chao Li ◽  
Yuxin Sun ◽  
Zhiyu Zhang ◽  
...  

As one of the most-critical components in space optical cameras, the performance of space mirrors directly affects the imaging quality of space optical cameras, and the lightweight form of mirror blanks is a key factor affecting the structural quality and the surface-shape accuracy of mirrors. For the design requirements of lightweight and high surface-shape accuracy with space mirrors, this study proposes a design and manufacturing method that integrates topology-optimization with additive-manufacturing technology. This article firstly introduced the basic process and key technologies of space-mirror design and analyzed the superiority of combining a topology-optimized configuration design and additive-manufacturing technology; secondly, the topology-optimized design method of a back-open-structure mirror was used to complete the scheme design of a Φ260 mm aperture mirror; finally, the laser selective-melting manufacturing technology was used to complete the Φ260 mm aperture mirror blank. The mirror and its support structure were assembled and tested in a modal mode; the resonant frequencies of the mirror assembly were all over 600 Hz; and the deviation from the analytical results was within 2%. The optical surface of the mirror was turned by the single-point diamond-turning (SPDT) technique. The accuracy of the optical surface was checked by a Zygo interferometer. The RMS accuracy of the mirror surface was 0.041λ (λ is the wavelength; λ = 632 nm). In the test of the influence of gravity on the surface-shape accuracy, the mirror was turned over, which was equivalent to twice the gravity, and the RMS of the mirror surface-shape accuracy was 0.043λ, which met the requirement. The verification results show that the mirror designed and fabricated by the additive-manufacturing-based mirror-topology-optimization method can be prepared by the existing process, and the machinability and mechanical properties can meet the requirements, which provides an effective development method for improving the structural design and optimizing the manufacturing of space reflectors.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
A Cubells ◽  
Y Garbatov ◽  
C Guedes Soares

The objective of the present study is to develop a new approach to model the initial geometrical imperfections of ship plates by using Photogrammetry. Based on images, Photogrammetry is able to take measurements of the distortions of plates and to catch the dominant surface shape, including the deformations of the edges. Having this data, it is possible to generate faithful models of plate surface based on third order polynomial functions. Finally, the maximum load- carrying capacity of the plates is analysed by performing a nonlinear finite element analysis using a commercial finite element code. Three un-stiffened and four stiffened plates have been modelled and analysed. For each plate, two initial imperfection models have been generated one, based on photogrammetric measurements and the other, based on the trigonometric Fourier functions. Both models are subjected to the same uniaxial compressive load and boundary conditions in order to study the ultimate strength.


Sign in / Sign up

Export Citation Format

Share Document