ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia – Parts A, B, C, and D
Latest Publications


TOTAL DOCUMENTS

481
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

9780791844403

Author(s):  
Hiroyoshi Watanabe ◽  
Hiroshi Tsukamoto

This paper presents the result of design optimization for three-bladed pump inducer using a three-dimensional (3-D) inverse design approach, Computational Fluid Dynamics (CFD) and DoE (Design of Experiments) taking suction performance and cavitation instability into consideration. The parameters to control streamwise blade loading distribution and spanwise work (free vortex or non-free vortex) for inducer were chosen as design optimization variables for the inverse design approach. Cavitating and non-cavitating performances for inducers designed using the design variables arranged in the DoE table were analyzed by steady CFD. Objective functions for non-cavitating operating conditions were the head and efficiency of inducers at a design flow (Qd), 80% Qd and 120% Qd. The volume of the inducer cavity region with a void ratio above 50% was selected as the objective function for inducer suction performance. In order to evaluate cavitation instability by steady CFD, the dispersion of the blade surface pressure distribution on each blade was selected as the evaluation parameter. This dispersion of the blade surface pressure distribution was caused by non-uniformity in the cavitation length that was developed on each inducer blade and increased when the cavitation number was reduced. The effective design parameters on suction performance and cavitation instability were confirmed by sensitivity analysis during the design optimization process. Inducers with specific characteristics (stable, unstable) designed using the effective parameters were evaluated through experiments.



Author(s):  
P. Fede ◽  
O. Simonin ◽  
I. Ghouila

Three dimensional unsteady numerical simulations of dense pressurized polydisperse fluidized bed have been carried out. The geometry is a medium-scale industrial pilot for ethylene polymerization. The numerical simulation have been performed with a polydisperse collision model. The consistency of the polydisperse model predictions with the monodisperse ones is shown. The results show that the pressure distribution and the mean vertical gas velocity are not modified by polydispersion of the solid phase. In contrast, the solid particle species are not identically distributed in the fluidized bed indicating the presence of particle segregation.



Author(s):  
Toru Koso ◽  
Hiroyuki Iwashita ◽  
Fumihiko Usuki

The turbulent mixing of liquid mass caused by an air bubble rising near a wall in a still liquid in a pipe is investigated experimentally using a photochromic dye. A part of the liquid is activated by UV light and subjected to the fluid motion caused by a zigzag rising bubble of which Reynolds number is 214. The visualized mixing patterns showed that the dye is mixed by vortex motions in the bubble wake that is similar to the case of a bubble rising in the center of the pipe. The concentration distributions were deduced from the dye images using Lambert-Beer’s law and the turbulent diffusion coefficient (TDC) was evaluated from the temporal changes in the mass dispersion. The TDCs showed that a near-wall bubble generates stronger mixing than for a bubble in the center of the pipe. This stronger mixing can be attributed to the large-scale vortices observed for a near-wall bubble, which remains active for a longer time due to the lack of oppositely rotating vortices and mixes more fluids.



Author(s):  
Makoto Yamamoto ◽  
Masaya Suzuki

Multi-Physics CFD Simulation will be one of key technologies in various engineering fields. There are two strategies to simulate a multi-physics phenomenon. One is “Strong Coupling”, and the other is “Weak Coupling”. Each can be employed, based on time-scales of physics embedded in a problem. That is, when a time-scale of one physics is nearly same as that of the other physics, we have to use Strong Coupling to take into account the interaction between two physics. On the other hand, when one time-scale is quite different from the other one, Weak Coupling can be applied. Considering the present computer performance, Strong Coupling is difficult to be used in engineering design processes now. Therefore, we are focusing on Weak Coupling, and it has been applied to a number of multi-physics CFD simulations in engineering. We have successfully simulated sand erosion, ice accretion, particle deposition, electro-chemical machining and so on, with using Weak Coupling method. In the present study, the difference between strong and weak couplings is briefly described, and two examples of our multi-physics CFD simulations are expressed. The numerical results indicate that Weak Coupling strategy is promising in a lot of multi-physics CFD simulations.



Author(s):  
Kin’ya Takahashi ◽  
Masataka Miyamoto ◽  
Yasunori Ito ◽  
Toshiya Takami ◽  
Taizo Kobayashi ◽  
...  

The acoustic mechanisms of 2D and 3D edge tones and a 2D small air-reed instrument have been studied numerically with compressible Large Eddy Simulation (LES). Sound frequencies of the 2D and 3D edge tones obtained numerically change with the jet velocity well following Brown’s semi-empirical equation, while that of the 2D air-reed instrument behaves in a different manner and obeys the semi-empirical theory, so called Cremer-Ising-Coltman theory. We have also calculated aerodynamic sound sources for the 2D edge tone and the 2D air-reed instrument relying on Ligthhill’s acoustic analogy and have discussed similarities and differences between them. The sound source of the air-reed instrument is more localized around the open mouth compared with that of the edge tone due to the effect of the strong sound field excited in the resonator.



Author(s):  
Alireza Riasi ◽  
Ahmad Nourbakhsh

Unsteady flow analysis in water power stations is one of the most important issues in order to predict undesirable pressure variations in waterways and also probable changes in rotor speed for the power plants safe operation. Installation of surge tank and relief valve is the two main methods for controlling of hydraulic transient. The relief valve is used in several medium and small hydropower stations instead of the surge tank and mounted on the penstock near the powerhouse. The recent generation of relief valves are reliable and beneficial and consist of fully control system that directly conducted by governor. This paper presents a numerical method for transient flow in hydropower stations using surge tank and relief valve. For this purpose the governing equations of transient flow in closed conduit are solved using the method of characteristics (MOC) using unsteady friction. Hydraulic turbine, surge tank and relief valve are considered as internal boundary conditions. The influence of surge tank and also relief valve on the maximum pressure in spiral case and turbine over speed has been studied for a real case. The results show that the transient condition is considerably improved by using a relief valve and this device can be mounted in lieu of an expensive surge tank.



Author(s):  
Jianshu Lin ◽  
Hong Wang

A comprehensive analysis method is proposed to resolve the problem of simulating a complex thermo-flow with two kinds of distinct characteristic length in the dry gas seal, and a conjugated simulation of the complicated heat transfer and the gas film flow is carried out by using the commercial CFD software CFX. By using the proposed method, a three dimensional of velocity and pressure field in the gas film flow and the temperature distribution within the sealing rings are investigated for three kinds of film thickness, respectively. A comparison of thermo-hydrodynamics of the dry gas seals is conducted between the sealed gas of air and helium. The latter one is used in a helium circulator for High Temperature Gas-cooled Reactor (HTGR). From comparisons and discussions of a series of simulation results, it will be found that the comprehensive proposal is effective and simulation results are reasonable, and the maximum temperature rise in the dry gas seal is within the acceptable range of HTGR safety requirements.



Author(s):  
Taro Handa ◽  
Hiroaki Miyachi ◽  
Hatsuki Kakuno ◽  
Takaya Ozaki

A mechanism of cavity-induced pressure oscillation in supersonic flows is not well understood in spite of a lot of former investigations. Especially, the process by which the pressure wave is generated and the path of the pressure wave propagating inside the cavity remain unclear. In order to clarify these, the oscillatory behaviors in the supersonic flow over a rectangular cavity are visualized by the schlieren method with a high-speed camera in the present study. The inlet Mach number of the flow is 1.68. The length and depth of the cavity are 14.0mm and 11.7mm respectively; i.e., the length-to-depth ratio of the cavity is 1.20. The pressure oscillation near the trailing edge of the cavity is also measured by use of the semiconductor-type pressure transducer simultaneously with the visualization. As a result, the pressure waves propagating inside as well as outside the cavity are successfully visualized. In addition, the relationship between the shear layer displacement, pressure wave generation and pressure oscillation at the trailing edge of the cavity are clarified experimentally.



Author(s):  
Samuel J. Hercus ◽  
Paola Cinnella

A robust shape optimization procedure based on a multi-objective genetic algorithm coupled to a non-intrusive uncertainty quantification analysis was applied to a transonic inviscid flow of a dense gas over a plane turbine cascade. The goal was to simultaneously improve the mean turbine performance and the system stability under fluctuating thermodynamic inlet conditions. Despite an elevated computational cost, the optimization procedure was capable of generating a Pareto front of turbine geometries which improved the mean isentropic turbine efficiency μ(ηs) over the baseline profile, while limiting the solution variability in terms of the coefficient of variation of the power output CV(P2D). In addition to demonstrating an excellent parallel scalability over 1600 processors, the robust optimization revealed that variability of CV(P2D) depends more on the variation of inlet conditions than turbine geometry. A posteriori stochastic analyses on selected optimized turbine geometries allowed an investigation of flow behavior variability, as well as propositions for the improved selection of robust optimization cost criteria in future simulations.



Author(s):  
Jinwook Kim ◽  
Dohyung Lee ◽  
Junhee Han ◽  
Sangwoo Kim

The Vertical Axis Wind Turbine (VAWT) has advantages over Horizontal Axis Wind Turbine (HAWT) that it allows less chance to be degraded independent of wind direction and turbine can be operated even at the low wind speed. The objective of this study is to analyze aerodynamics of the VAWT airfoil and investigate the ideal shape of airfoil, more specifically cambers. The analysis of aerodynamic characteristics with various cambers has been performed using numerical simulation with CFD software. As the numerical simulation discloses local physical features around wind turbine, aerodynamic performance such as lift, drag and torque are computed for single airfoil rotation and multiple airfoil rotation cases. Through this study more effective airfoil shape is suggested based vortex-airfoil interaction studies.



Sign in / Sign up

Export Citation Format

Share Document