flow stability
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 59)

H-INDEX

27
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8338
Author(s):  
Kunhang Li ◽  
Wenqian Xu ◽  
Hua-Shu Dou

The flow behavior inside a miniature centrifugal pump, under a periodic pulse flow rate, was studied by means of numerical simulation. For a given incoming periodic pulse flow with a sine wave, the performance of the centrifugal pump was investigated in the section with increasing flow and the section with decreasing flow, and the special points of the flow rate and the periodic flow were identified. Further, the energy gradient method and the Q-criterion were adopted to analyze the internal vertical structure and flow stability. It was found that the regions with large variations in velocity and total pressure were mainly located at the leading edge of the suction surface and the middle area of the pressure surface of the blades. Irregular pressure fluctuation frequency under the periodic pulse flow was shown; this was mainly concentrated in the low-frequency zones close to the impeller’s rotational frequency. In addition, for the same flow rate in the periodic pulse flow, the pressure frequency fluctuation for the increasing flow rate section was higher than that observed for the decreasing flow rate section. It was found that the most unstable sections appeared in the first half-period of the flow rate variation (large flow rate), according to the distributions of the Q criteria of the vortex and the energy gradient function K. In this section, motions of strong vortices led to large gradients of the mechanical energy.


2021 ◽  
Vol 410 ◽  
pp. 126466
Author(s):  
Lorenzo Fusi ◽  
Angiolo Farina
Keyword(s):  

Author(s):  
Qi Liu ◽  
Shuai Tian ◽  
Yong-xiang Wang ◽  
Zhe Lin ◽  
Zu-chao Zhu

Transient control of process valves, including opening and closing processes, is consistently encountered in many fluid transportation and control industries. During opening and closing processes, valve-induced transient flow presents different unstable flow characteristics. This transient valve-induced unstable flow that develops along the pipeline can cause violent pressure and velocity fluctuations that considerably influence accurate flow measurement downstream. In this paper, gate valve-induced flow characteristics during opening and closing processes were comparatively studied. An experimental system was developed to monitor the downstream pressure along the pipeline, and corresponding transient numerical simulations were performed on opening and closing processes using a user-defined function and dynamic grid technology. The pressure distributions along the pipeline's downstream area during valve opening and closing processes were investigated to verify the accuracy of the numerical simulation. The mechanism of transient flow difference under the same valve opening during opening and closing processes was determined to be a hysteresis effect. The jet flow intensity under a small valve opening in the opening process was greater than that in the closing process, and the difference in flow field under the 50% valve opening was the largest. Moreover, the velocity and turbulent kinetic energy distributions in different downstream cross-sections during valve opening and closing processes were comparatively analyzed. The change rate of the maximum turbulent kinetic energy was introduced to further analyze the different effects of opening and closing processes on the transient flow stability downstream of the valve. Results showed that the flow stability between 40% and 50% valve opening was the worst irrespective of the adjustment process, that is, a large pipeline distance was required to stabilize this transient flow. This study helps in understanding transient valve-induced flow characteristics in fluid transportation pipelines and provides guidance for accurate flow metering industrial applications.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jin Wan ◽  
Xin Huang ◽  
Wenzhi Qin ◽  
Xiuge Gu ◽  
Min Zhao

In order to prevent the occurrence of traffic accidents, drivers always focus on the running conditions of the preceding and rear vehicles to change their driving behavior. By taking into the “backward-looking” effect and the driver’s anticipation effect of flux difference consideration at the same time, a novel two-lane lattice hydrodynamic model is proposed to reveal driving characteristics. The corresponding stability conditions are derived through a linear stability analysis. Then, the nonlinear theory is also applied to derive the mKdV equation describing traffic congestion near the critical point. Linear and nonlinear analyses of the proposed model show that how the “backward-looking” effect and the driver’s anticipation behavior comprehensively affect the traffic flow stability. The results show that the positive constant γ , the driver’s anticipation time τ , and the sensitivity coefficient p play significant roles in the improvement of traffic flow stability and the alleviation of the traffic congestion. Furthermore, the effectiveness of linear stability analysis and nonlinear analysis results is demonstrated by numerical simulations.


2021 ◽  
Author(s):  
Tim C. Lieuwen

Explore a unified treatment of the dynamics of combustor systems, including acoustics, fluid mechanics, and combustion in a single rigorous text. This updated new edition features an expansion of data and experimental material, updates the coverage of flow stability, and enhanced treatment of flame dynamics. Addresses system dynamics of clean energy and propulsion systems used in low emissions systems. Synthesizing the fields of fluid mechanics and combustion into a coherent understanding of the intrinsically unsteady processes in combustors. This is a perfect reference for engineers and researchers in fluid mechanics, combustion, and clean energy.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6850
Author(s):  
Tao Meng ◽  
Huanchang Wei ◽  
Feng Gao ◽  
Huichao Shi

In order to accurately evaluate the flow stability of the flow standard facility, the flow fluctuation in the standard facility needs to be accurately measured. However, the flow fluctuation signal is always superimposed with the fluctuation signal of the measuring flowmeter or measurement system (mainly noise), which leads to inaccurate measurement of the flow fluctuation and even an unreliable evaluation result of the flow stability. In addition, when there are multiple fluctuation sources, flow fluctuations with different frequencies are superimposed together, which is extremely unfavorable for evaluating the impact of flow fluctuation with different single frequencies. In this paper, a new measuring method was proposed to obtain the fluctuation signal and the flow fluctuation based on singular value decomposition (SVD). Simulation experiments on the fluctuation signal (single frequency and multiple frequencies) under different levels of noise were conducted, and simulation results showed that the proposed method could accurately obtain the fluctuation signal and the flow fluctuation, even under high noise. Finally, an experimental platform was set-up based on a water flow standard facility and a flow fluctuation generator, and experiments on the output signal of a venturi flowmeter were carried out. The experiment results showed that the proposed method could effectively obtain the fluctuation signal and accurately measure the flow fluctuation.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1832
Author(s):  
Milada Kozubková ◽  
Jana Jablonská ◽  
Marian Bojko ◽  
František Pochylý ◽  
Simona Fialová

This paper deals with a mathematical modeling of flow stability of Newtonian and non-Newtonian fluids in the gap between two concentric cylinders, one of which rotates. A typical feature of the flow is the formation of a vortex flow, so-called Taylor vortices. Vortex structures are affected by the speed of the rotating cylinder and the physical properties of the fluids, i.e., viscosity and density. Analogy in terms of viscosity is assumed for non-Newtonian and magnetorheological fluids. Mathematical models of laminar, transient and turbulent flow with constant viscosity and viscosity as a function of the deformation gradient were formulated and numerically solved to analyze the stability of single-phase flow. To verify them, a physical experiment was performed for Newtonian fluids using visualizations of vortex structures—Taylor vortices. Based on the agreement of selected numerical and physical results, the experience was used for numerical simulations of non-Newtonian magnetorheological fluid flow.


Sign in / Sign up

Export Citation Format

Share Document