On efficient high-order semi-implicit time-stepping schemes for unsteady incompressible Navier–Stokes equations

2017 ◽  
Vol 148 ◽  
pp. 166-184 ◽  
Author(s):  
K.C. Loy ◽  
Y. Bourgault
AIAA Journal ◽  
1996 ◽  
Vol 34 (3) ◽  
pp. 555-559 ◽  
Author(s):  
K. J. Badcock ◽  
B. E. Richards

Author(s):  
Andrea Arnone ◽  
Roberto Pacciani

A recently developed, time-accurate multigrid viscous solver has been extended to the analysis of unsteady rotor-stator interaction. In the proposed method, a fully-implicit time discretization is used to remove stability limitations. By means of a dual time-stepping approach, a four-stage Runge-Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. The accelerating strategies include local time stepping, residual smoothing, and multigrid. Two-dimensional viscous calculations of unsteady rotor-stator interaction in the first stage of a modem gas turbine are presented. The stage analysis is based on the introduction of several blade passages to approximate the stator:rotor count ratio. Particular attention is dedicated to grid dependency in space and time as well as to the influence of the number of blades included in the calculations.


1995 ◽  
Vol 117 (4) ◽  
pp. 647-652 ◽  
Author(s):  
A. Arnone ◽  
R. Pacciani ◽  
A. Sestini

A Navier-Stokes time-accurate solver has been extended to the analysis of unsteady rotor-stator interaction. In the proposed method, a fully-implicit time discretization is used to remove stability limitations. A four-stage Runge-Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. Those accelerating strategies include local time stepping, residual smoothing, and multigrid. Direct interpolation of the conservative variables is used to handle the interfaces between blade rows. Two-dimensional viscous calculations of unsteady rotor-stator interaction in a modern gas turbine stage are presented to check for the capability of the procedure.


Sign in / Sign up

Export Citation Format

Share Document