Solution to the Compressible Navier-Stokes Equations of Motion by Chebyshev Polynomials with Implicit Time Stepping

1988 ◽  
Author(s):  
Leonidas Sakell
AIAA Journal ◽  
1996 ◽  
Vol 34 (3) ◽  
pp. 555-559 ◽  
Author(s):  
K. J. Badcock ◽  
B. E. Richards

Author(s):  
Andrea Arnone ◽  
Roberto Pacciani

A recently developed, time-accurate multigrid viscous solver has been extended to the analysis of unsteady rotor-stator interaction. In the proposed method, a fully-implicit time discretization is used to remove stability limitations. By means of a dual time-stepping approach, a four-stage Runge-Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. The accelerating strategies include local time stepping, residual smoothing, and multigrid. Two-dimensional viscous calculations of unsteady rotor-stator interaction in the first stage of a modem gas turbine are presented. The stage analysis is based on the introduction of several blade passages to approximate the stator:rotor count ratio. Particular attention is dedicated to grid dependency in space and time as well as to the influence of the number of blades included in the calculations.


1995 ◽  
Vol 117 (4) ◽  
pp. 647-652 ◽  
Author(s):  
A. Arnone ◽  
R. Pacciani ◽  
A. Sestini

A Navier-Stokes time-accurate solver has been extended to the analysis of unsteady rotor-stator interaction. In the proposed method, a fully-implicit time discretization is used to remove stability limitations. A four-stage Runge-Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. Those accelerating strategies include local time stepping, residual smoothing, and multigrid. Direct interpolation of the conservative variables is used to handle the interfaces between blade rows. Two-dimensional viscous calculations of unsteady rotor-stator interaction in a modern gas turbine stage are presented to check for the capability of the procedure.


1996 ◽  
Vol 118 (4) ◽  
pp. 679-689 ◽  
Author(s):  
A. Arnone ◽  
R. Pacciani

A recently developed, time-accurate multigrid viscous solver has been extended to the analysis of unsteady rotor–stator interaction. In the proposed method, a fully implicit time discretization is used to remove stability limitations. By means of a dual time-stepping approach, a four-stage Runge–Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. The accelerating strategies include local time stepping, residual smoothing, and multigrid. Two-dimensional viscous calculations of unsteady rotor–stator interaction in the first stage of a modern gas turbine are presented. The stage analysis is based on the introduction of several blade passages to approximate the stator:rotor count ratio. Particular attention is dedicated to grid dependency in space and time as well as to the influence of the number of blades included in the calculations.


Author(s):  
Muheng Zhang ◽  
Yongsheng Lian

Coulter counters are analytical microfluidic instrument used to measure the size and concentration of biological cells or colloid particles suspended in electrolyte. The underlying working mechanism of Coulter counters is the Coulter principle which relies on the fact that when low-conductive cells pass through an electric field these cells cause disturbances in the measurement (current or voltage). Useful information about these cells can be obtained by analyzing these disturbances if an accurate correlation between the measured disturbances and cell characteristics. In this paper we use computational fluid dynamics method to investigate this correlation. The flow field is described by solving the Navier-Stokes equations, the electric field is represented by a Laplace’s equation in which the conductivity is calculated from the Navier-Stokes equations, and the cell motion is calculated by solving the equations of motion. The accuracy of the code is validated by comparing with analytical solutions. The study is based on a coplanar Coulter counter with three inlets that consist of two sheath flow inlet and one conductive flow inlet. The effects of diffusivity, cell size, sheath flow rate, and cell geometry are discussed in details. The impacts of electrode size, gap between electrodes and electrode location on the measured distribution are also studied.


Sign in / Sign up

Export Citation Format

Share Document