scholarly journals Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases

2019 ◽  
Vol 179 ◽  
pp. 543-562 ◽  
Author(s):  
Alex D. Chow ◽  
Benedict D. Rogers ◽  
Steven J. Lind ◽  
Peter K. Stansby
Author(s):  
Hongjie Wen ◽  
Bing Ren

A viscous 3D numerical wave basin for high nonlinear waves was developed based on Smoothed Particle Hydrodynamics (SPH) method. The computational accuracy of SPH method is mainly improved by introducing the Corrective Smoothed Particle Hydrodynamics Method (CSPM) and a novel pressure correction scheme. The incident waves are generated from the inflow boundary by prescribing a velocity profile of the flap-type wavemaker motions, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the basin. Moreover, the parallelization of the improved 3D SPH scheme has been carried out using a hybrid MPI-OpenMP programming, together with a dynamic load balancing strategy to improve the computational efficiency. The generation and propagation of regular wave and solitary wave have been simulated. Wave forces induced by regular wave acting on a large-diameter circular cylinder and solitary wave passing over a submerged breakwater are also presented to verify the accuracy of SPH model. In addition, several computing cases of different particle resolutions are investigated and a high parallel efficiency is obtained.


Author(s):  
Abdelraheem M. Aly

Purpose This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating pipe and filled with nanofluid. Design/methodology/approach The Lagrangian description of the governing partial differential equations are solved numerically using improved ISPH method. The inner oscillating pipe is divided into two different pipes as an open and a closed pipe. The sidewalls of the cavity are cooled with a lower concentration C_c and the horizontal walls are adiabatic. The inner pipe is heated with higher concentration C_h. The analysis has been conducted for the two different cases of inner oscillating pipes under the effects of wide range of governing parameters. Findings It is found that a suitable oscillating pipe makes a well convective transport inside a cavity. Presence of the oscillating pipe has effects on the heat and mass transfer and fluid intensity inside a cavity. Hartman parameter suppresses the velocity and weakens the maximum values of the stream function. An increase on Hartman, Lewis and solid volume fraction parameters leads to an increase on average Nusselt number on an oscillating pipe and left cavity wall. Average Sherwood number on an oscillating pipe and left cavity wall decreases as Hartman parameter increases. Originality/value The main objective of this work is to study the MHD double-diffusive natural convection of a nanofluid in a square cavity containing an oscillating pipe using improved ISPH method.


2021 ◽  
pp. 108263
Author(s):  
Joseph O'Connor ◽  
José M. Domínguez ◽  
Benedict D. Rogers ◽  
Steven J. Lind ◽  
Peter K. Stansby

Sign in / Sign up

Export Citation Format

Share Document