surface flows
Recently Published Documents


TOTAL DOCUMENTS

1079
(FIVE YEARS 139)

H-INDEX

63
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
David Hardman ◽  
Thomas George Thuruthel ◽  
Fumiya Iida

AbstractThe ability to remotely control a free-floating object through surface flows on a fluid medium can facilitate numerous applications. Current studies on this problem have been limited to uni-directional motion control due to the challenging nature of the control problem. Analytical modelling of the object dynamics is difficult due to the high-dimensionality and mixing of the surface flows while the control problem is hard due to the nonlinear slow dynamics of the fluid medium, underactuation, and chaotic regions. This study presents a methodology for manipulation of free-floating objects using large-scale physical experimentation and recent advances in deep reinforcement learning. We demonstrate our methodology through the open-loop control of a free-floating object in water using a robotic arm. Our learned control policy is relatively quick to obtain, highly data efficient, and easily scalable to a higher-dimensional parameter space and/or experimental scenarios. Our results show the potential of data-driven approaches for solving and analyzing highly complex nonlinear control problems.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 460
Author(s):  
Milad Rakhsha ◽  
Christopher E. Kees ◽  
Dan Negrut

As a step towards addressing a scarcity of references on this topic, we compared the Eulerian and Lagrangian Computational Fluid Dynamics (CFD) approaches for the solution of free-surface and Fluid–Solid Interaction (FSI) problems. The Eulerian approach uses the Finite Element Method (FEM) to spatially discretize the Navier–Stokes equations. The free surface is handled via the volume-of-fluid (VOF) and the level-set (LS) equations; an Immersed Boundary Method (IBM) in conjunction with the Nitsche’s technique were applied to resolve the fluid–solid coupling. For the Lagrangian approach, the smoothed particle hydrodynamics (SPH) method is the meshless discretization technique of choice; no additional equations are needed to handle free-surface or FSI coupling. We compared the two approaches for a flow around cylinder. The dam break test was used to gauge the performance for free-surface flows. Lastly, the two approaches were compared on two FSI problems—one with a floating rigid body dropped into the fluid and one with an elastic gate interacting with the flow. We conclude with a discussion of the robustness, ease of model setup, and versatility of the two approaches. The Eulerian and Lagrangian solvers used in this study are open-source and available in the public domain.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012122
Author(s):  
Eugenio Schillaci ◽  
Federico Favre ◽  
Peter Troch ◽  
Assensi Oliva

Abstract In this work we present a numerical framework to carry-out numerical simulations of fluid-structure interaction phenomena in free-surface flows. The framework employs a single-phase method to solve momentum equations and interface advection without solving the gas phase, an immersed boundary method (IBM) to represent the moving solid within the fluid matrix and a fluid structure interaction (FSI) algorithm to couple liquid and solid phases. The method is employed to study the case of a single point wave energy converter (WEC) device, studying its free decay and its response to progressive linear waves.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1330
Author(s):  
Sylvio Freitas ◽  
Frank Harms ◽  
Bernd Leitl

With the aim of ascertaining the effects of the widths (A) of valleys on near-surface turbulence, flows over an isolated symmetric three-dimensional valley of constant depth (H) and slopes are characterized in a large-boundary-layer wind tunnel. Starting at A = 4H, valley widths were systematically varied to A = 12H with constant increments of 2H. High-resolution laser-Doppler velocimetry measurements were made at several equivalent locations above each of the resulting valley geometries and compared with data from undisturbed flows over flat terrain. Flow separation caused by the first ridges generated inner-valley recirculation bubbles with lengths dependent on the valley widths. Secondary recirculation zones were also observed downstream from the crests of the second ridges. Results show that the width modifications exert the strongest effects on turbulence within the valleys and the vicinities of the second ridges. Above these locations, maximal magnitudes of turbulence are generally found for the larger width geometries. Furthermore, lateral turbulence overpowers the longitudinal counterparts nearest to the surface, with maximal gains occurring for the smaller widths. Our data indicate that valley widths are impactful on near-surface flows and should be considered together with other more established geometric parameters of influence.


Sign in / Sign up

Export Citation Format

Share Document