Stability analysis of irregular cavities using upper bound finite element limit analysis method

2018 ◽  
Vol 103 ◽  
pp. 1-12 ◽  
Author(s):  
Lianheng Zhao ◽  
Shan Huang ◽  
Rui Zhang ◽  
Shi Zuo
Author(s):  
Peyman Hamidi ◽  
Tohid Akhlaghi ◽  
Masoud Hajialilou Bonab

Limit analysis is a useful method to calc1ulate bearing capacity of footings, earth pressure of retaining walls, stability of slopes and excavations. In recent years, many efforts have been focused on stability problems of geotechnical structures with the limit analysis method. The limit analysis method includes the upper and lower bound theorems. By using the two theorems, the range, in which the true solution falls, can be found. In this paper upper bound finite element limit analysis is used for calculate active earth force on retaining walls in non-homogeneous soils. Elements with linear strain rates cause to eliminate the necessity of velocity discontinuities between the elements. Nonlinear programming based on second order cone programming (SOCP) ,which has good conformity with Mohr-Coulomb criterion used in this paper. The sensitivity of active earth force against backfill surcharge (q), soil layers cohesion (Ci), soil layers unit weight (γi) and friction angle between soil and wall (δi) is surveyed.


2020 ◽  
Vol 2 (1) ◽  
pp. 44-57
Author(s):  
Lianheng Zhao ◽  
Nan Qiao ◽  
Zhigang Zhao ◽  
Shi Zuo ◽  
Xiang Wang

Abstract The upper bound limit analysis (UBLA) is one of the key research directions in geotechnical engineering and is widely used in engineering practice. UBLA assumes that the slip surface with the minimum factor of safety (FSmin) is the critical slip surface, and then applies it to slope stability analysis. However, the hypothesis of UBLA has not been systematically verified, which may be due to the fact that the traditional numerical method is difficult to simulate the large deformation. In this study, in order to systematically verify the assumption of UBLA, material point method (MPM), which is suitable to simulate the large deformation of continuous media, is used to simulate the whole process of the slope failure, including the large-scale transportation and deposition of soil mass after slope failure. And a series of comparative studies are conducted on the stability of cohesive slopes using UBLA and MPM. The proposed study indicated that the slope angle, internal friction angle and cohesion have a remarkable effect on the slip surface of the cohesive slope. Also, for stable slopes, the calculation results of the two are relatively close. However, for unstable slopes, the slider volume determined by the UBLA is much smaller than the slider volume determined by the MPM. In other words, for unstable slopes, the critical slip surface of UBLA is very different from the slip surface when the slope failure occurs, and when the UBLA is applied to the stability analysis of unstable slope, it will lead to extremely unfavorable results.


Sign in / Sign up

Export Citation Format

Share Document