slope failure
Recently Published Documents





2022 ◽  
Vol 92 (1) ◽  
pp. 1-11
Catharina J. Heerema ◽  
Matthieu J.B. Cartigny ◽  
Ricardo Silva Jacinto ◽  
Stephen M. Simmons ◽  
Ronan Apprioual ◽  

ABSTRACT Turbidity currents triggered at river mouths form an important highway for sediment, organic carbon, and nutrients to the deep sea. Consequently, it has been proposed that the deposits of these flood-triggered turbidity currents provide important long-term records of past river floods, continental erosion, and climate. Various depositional models have been suggested to identify river-flood-triggered turbidite deposits, which are largely based on the assumption that a characteristic velocity structure of the flood-triggered turbidity current is preserved as a recognizable vertical grain size trend in their deposits. Four criteria have been proposed for the velocity structure of flood-triggered turbidity currents: prolonged flow duration; a gradual increase in velocity; cyclicity of velocity magnitude; and a low peak velocity. However, very few direct observations of flood-triggered turbidity currents exist to test these proposed velocity structures. Here we present direct measurements from the Var Canyon, offshore Nice in the Mediterranean Sea. An acoustic Doppler current profiler was located 6 km offshore from the river mouth, and provided detailed velocity measurements that can be directly linked to the state of the river. Another mooring, positioned 16 km offshore, showed how this velocity structure evolved down-canyon. Three turbidity currents were measured at these moorings, two of which are associated with river floods. The third event was not linked to a river flood and was most likely triggered by a seabed slope failure. The multi-pulsed and prolonged velocity structure of all three (flood- and landslide-triggered) events is similar at the first mooring, suggesting that it may not be diagnostic of flood triggering. Indeed, the event that was most likely triggered by a slope failure matched the four flood-triggered criteria best, as it had prolonged duration, cyclicity, low velocity, and a gradual onset. Hence, previously assumed velocity-structure criteria used to identify flood-triggered turbidity currents may be produced by other triggers. Next, this study shows how the proximal multi-pulsed velocity structure reorganizes down-canyon to produce a single velocity pulse. Such rapid-onset, single-pulse velocity structure has previously been linked to landslide-triggered events. Flows recorded in this study show amalgamation of multiple velocity pulses leading to shredding of the flood signal, so that the original initiation mechanism is no longer discernible at just 16 km from the river mouth. Recognizing flood-triggered turbidity currents and their deposits may thus be challenging, as similar velocity structures can be formed by different triggers, and this proximal velocity structure can rapidly be lost due to self-organization of the turbidity current.

2022 ◽  
Vol 10 (1) ◽  
pp. 23-42
Yan Zhong ◽  
Qiao Liu ◽  
Matthew Westoby ◽  
Yong Nie ◽  
Francesca Pellicciotti ◽  

Abstract. Topographic development via paraglacial slope failure (PSF) represents a complex interplay between geological structure, climate, and glacial denudation. Southeastern Tibet has experienced amongst the highest rates of ice mass loss in High Mountain Asia in recent decades, but few studies have focused on the implications of this mass loss on the stability of paraglacial slopes. We used repeat satellite- and unpiloted aerial vehicle (UAV)-derived imagery between 1990 and 2020 as the basis for mapping PSFs from slopes adjacent to Hailuogou Glacier (HLG), a 5 km long monsoon temperate valley glacier in the Mt. Gongga region. We observed recent lowering of the glacier tongue surface at rates of up to 0.88 m a−1 in the period 2000 to 2016, whilst overall paraglacial bare ground area (PBGA) on glacier-adjacent slopes increased from 0.31 ± 0.27 km2 in 1990 to 1.38 ± 0.06 km2 in 2020. Decadal PBGA expansion rates were ∼ 0.01 km2 a−1, 0.02 km2 a−1, and 0.08 km2 in the periods 1990–2000, 2000–2011, and 2011–2020 respectively, indicating an increasing rate of expansion of PBGA. Three types of PSFs, including rockfalls, sediment-mantled slope slides, and headward gully erosion, were mapped, with a total area of 0.75 ± 0.03 km2 in 2020. South-facing valley slopes (true left of the glacier) exhibited more destabilization (56 % of the total PSF area) than north-facing (true right) valley slopes (44 % of the total PSF area). Deformation of sediment-mantled moraine slopes (mean 1.65–2.63 ± 0.04 cm d−1) and an increase in erosion activity in ice-marginal tributary valleys caused by a drop in local base level (gully headward erosion rates are 0.76–3.39 cm d−1) have occurred in tandem with recent glacier downwasting. We also observe deformation of glacier ice, possibly driven by destabilization of lateral moraine, as has been reported in other deglaciating mountain glacier catchments. The formation, evolution, and future trajectory of PSFs at HLG (as well as other monsoon-dominated deglaciating mountain areas) are related to glacial history, including recent rapid downwasting leading to the exposure of steep, unstable bedrock and moraine slopes, and climatic conditions that promote slope instability, such as very high seasonal precipitation and seasonal temperature fluctuations that are conducive to freeze–thaw and ice segregation processes.

David Reid ◽  
Simon Dickinson ◽  
Utkarsh Mital ◽  
Riccardo Fanni ◽  
Andy Fourie

Static liquefaction has been identified as the cause of several recent tailings storage facility (TSF) failures. Partially based on the investigations carried out, significant advances on the analysis of static liquefaction triggering have been made. This includes application of critical state-based models in a stress-deformation framework to identify if in situ conditions are approaching a level where triggering could occur. However, several important uncertainties remain. The current work investigates three of these uncertainties and their effect (both independently, and in conjunction) on the identification of static liquefaction triggering and slope failure: geostatic stress ratio K0, intermediate principal stress ratio, and principal stress angle from vertical. These uncertainties are examined through a series of numerical analyses of an idealised TSF. Various values of K0 are used to examine their effect on triggering, while different approaches to the potential effect of intermediate principal stress ratio and principal stress angle from vertical on instability are taken. This work shows that current state of knowledge in these areas is such that significant uncertainty seems unavoidable in attempting to identify exactly when a particular slope may undergo static liquefaction triggering. Experimental and in situ test programs that may be useful in reducing this uncertainty are outlined.

2021 ◽  
Vol 21 (12) ◽  
pp. 3863-3871
Jim S. Whiteley ◽  
Arnaud Watlet ◽  
J. Michael Kendall ◽  
Jonathan E. Chambers

Abstract. We summarise the contribution of geophysical imaging to local landslide early warning systems (LoLEWS), highlighting how the design and monitoring components of LoLEWS benefit from the enhanced spatial and temporal resolutions of time-lapse geophysical imaging. In addition, we discuss how with appropriate laboratory-based petrophysical transforms, geophysical data can be crucial for future slope failure forecasting and modelling, linking other methods of remote sensing and intrusive monitoring across different scales. We conclude that in light of ever-increasing spatiotemporal resolutions of data acquisition, geophysical monitoring should be a more widely considered technology in the toolbox of methods available to stakeholders operating LoLEWS.

UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 236
Akhmudiyanto Akhmudiyanto ◽  
Paulus Pramono Rahardjo ◽  
Rinda Karlinasari

One of the causes of on-road collapse slopes is traffic load. Slope failure by road loads usually occurs due to several factors such as soil type, rainfall, land use. This study aims to determine landslide and slope repair performance using bore pile and ground anchor on Cipali Toll Road KM 103. The research method used in this study is the Finite element method. In this research, data collection, modeling parameter determination, slope stability analysis, slope reinforcement analysis, and reinforcement design were carried out with variations in bore pile and ground anchor dimensions. The software program used is a finite element program in the form of PLAXIS to analyze slope stability and estimate the slope failure area. The result of the study is that the R-Value inter is 0.25 with a 1.0341 safety factor. Best repair performance obtained from the addition of reinforcement with ground anchor 2 layer on bore pile 2 with a distance of 2 meters increased the safety factor to 1,913; Borepile capacity calculation with the calculation of normal force and moment iteration, the largest occurs in the DPT (Retaining Wall) stage with a normal load of -37.9 and a moment force of -471.15 which is still able to be borne by bore pile 1. The result of this study is expected to be benchmark and repair material to improve slope stability at km 103 Tol Cipali

Sign in / Sign up

Export Citation Format

Share Document