slope stability
Recently Published Documents


TOTAL DOCUMENTS

4462
(FIVE YEARS 1134)

H-INDEX

80
(FIVE YEARS 12)

2022 ◽  
Vol 143 ◽  
pp. 104586
Author(s):  
Dakshith Ruvin Wijesinghe ◽  
Ashley Dyson ◽  
Greg You ◽  
Manoj Khandelwal ◽  
Chongmin Song ◽  
...  

2022 ◽  
Vol 28 (2) ◽  
pp. 81-92
Author(s):  
Chihcheng Chen ◽  
Ban-Jwu Shih ◽  
Ching-Jiang Jeng

The main structure of the Baishihu suspension bridge was connected to the anchor foundations by three main steel cables. The wooden pedestrian deck was fixed to the main steel cables using steel beams and was stabilized by two stabilizing cables. The stabilizing cables and bridge body were joined by 44 steel connecting rods. Therefore, the slope stability at the anchorage foundations of the main steel cables, as well as the performance monitoring and analysis of the main steel cables and stabilizing cables, are critical to the overall performance of the suspension bridge. This paper discusses the performance monitoring and analysis of the steel cable deflection and cable strength for this bridge, as well as the main considerations and results of the stability analysis of the bridge abutments and side slopes of the two banks. Water-level observation wells, inclinometers, and tiltmeters monitoring were used to record reference data for the analysis of the slope stability performance. Additionally, the three-dimensional dynamic analysis program VFIFE was used to analyze the deformation and motion of the bridge. The final steady-state results were used to compare the static design value and monitoring data. The dynamic response before the final steady state was also observed.


Author(s):  
Lafridha Alyazahari ◽  
Luthfi Amri Wicaksono ◽  
Dwi Nurtanto

A Landslide is the movement of soil mass or rock constituents down the slope due to disturbance of soil stability. One of the factors that affect soil stability is the rainy season as happened in Sumberwuluh Village, Candipuro District, Lumajang Regency. The alternative used to stabilize the slope is by changing the slope geometry, then adding geoframe reinforcement. This study aims to determine the value of the factor of safety (SF) of unreinforced slopes, after changing the slope geometry, and after being given geoframe reinforcement. The method used in analyzing slope stability is the Ordinary/Fellenius method. The results of the calculation of slope stability without reinforcement using the Rocscience Slide software obtained a SF of 0.719, while the manual calculation obtained a SF of 0.7191. The two values ​​of the safety factor are less than 1.25, which means that landslides often occur. The results of the calculation of slope stability after changing the geometry of the slopes obtained a SF of 0.828 where the value is less than 1.25 which means that landslides often occur. The slopes that have been changed geometry are added with geoframe reinforcement. The results of the calculation of slope stability using geoframe reinforcement obtained a SF of 1.315 where the value is more than 1.25 which means that landslides are rare or slope in a safe condition.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Juyu Jiang ◽  
Ye Lu ◽  
Dong Wang ◽  
Xinping Han

AbstractSlope stability is a prominent problem for the efficient application and promotion of highwall mining technology, especially when mining residual coal under high and steep end-slope conditions. This study proposes the concept of target time pillar strength based on the required coal pillar service time. Creep tests were performed to measure the time-varying properties of coal shear strength parameters under different loads, and a time-varying function was established by regression. The highwall mining length is divided into three categories based on discontinuous structural plane theory, including goaf, yielding, and elastic zones, all of which are considered to have resistances against shear stress. The basal coal seam is prone to weakening owing to the weight of overlying strata, which may shift the slope failure mode from circular to sliding along the weak layer. Numerical modeling was used to study the influence of the bearing stress and target time strength on the development of the yielding zone at the coal pillar ribs. The coefficients of the three zones were determined, and the temporal and spatial evolution patterns of the shear strength parameters of the weak layer were acquired. A slope stability calculation method is proposed based on rigid body-limit equilibrium theory that can quantify the influence of highwall mining operations on slope stability, which is significant for popularizing highwall mining technology.


Author(s):  
Andrew Clarke ◽  
Carl Tipler

For $(X,\,L)$ a polarized toric variety and $G\subset \mathrm {Aut}(X,\,L)$ a torus, denote by $Y$ the GIT quotient $X/\!\!/G$ . We define a family of fully faithful functors from the category of torus equivariant reflexive sheaves on $Y$ to the category of torus equivariant reflexive sheaves on $X$ . We show, under a genericity assumption on $G$ , that slope stability is preserved by these functors if and only if the pair $((X,\,L),\,G)$ satisfies a combinatorial criterion. As an application, when $(X,\,L)$ is a polarized toric orbifold of dimension $n$ , we relate stable equivariant reflexive sheaves on certain $(n-1)$ -dimensional weighted projective spaces to stable equivariant reflexive sheaves on $(X,\,L)$ .


2022 ◽  
Vol 14 (0) ◽  
pp. 1-5
Author(s):  
Tadas Tamošiūnas

This paper describes the stability calculations of the most common road embankments slopes and their results using the modified Bishop method. By searching for the smallest possible effective angle of internal friction of the different slope steepness embankments, the possible different bases of the embankment, the weight of the embankment soil, the load caused by transport and the location of load application (shoulder) were evaluated. Analyzing the obtained calculation results, it was determined that at a slope of 1:2 (26.57°) steepness, to ensure slope stability, the calculated effective internal friction angle of the embankment soil should be φʹd ≥ 28.5°, and at a slope of 1:1.75 (29.74°) steepness – φʹd ≥ 29.8°. When the slope is 2:3 (33.69°) steepness, the stability of the slope cannot be guaranteed.


Author(s):  
Mohammad Khajehzadeh ◽  
Suraparb Keawsawasvong ◽  
Payam Sarir ◽  
Dlshad Khurshid Khailany

One of the most important topics in geotechnical engineering is seismic analysis of the earth slope. In this study, a pseudo-static limit equilibrium approach is applied for the slope stability evaluation under earthquake loading based on the Morgenstern–Price method for the general shape of the slip surface. In this approach, the minimum factor of safety corresponding to the critical failure surface should be investigated and it is a complex optimization problem. This paper proposed an effective sequential hybrid optimization algorithm based on the tunicate swarm algorithm (TSA) and pattern search (PS) for seismic slope stability analysis. The proposed method employs the global search ability of TSA and the local search ability of PS. The performance of the new CTSA-PS algorithm is investigated using a set of benchmark test functions and the results are compared with the standard TSA and some other methods from the literature. In addition, two case studies from the literature are considered to evaluate the efficiency of the proposed CTSA-PS for seismic slope stability analysis. The numerical investigations show that the new approach may provide better optimal solutions and outperform previous methods.


2022 ◽  
Vol Volume 5 ◽  
Author(s):  
Yoshinori Hashimoto ◽  
Julien Keller

For a holomorphic vector bundle $E$ over a polarised K\"ahler manifold, we establish a direct link between the slope stability of $E$ and the asymptotic behaviour of Donaldson's functional, by defining the Quot-scheme limit of Fubini-Study metrics. In particular, we provide an explicit estimate which proves that Donaldson's functional is coercive on the set of Fubini-Study metrics if $E$ is slope stable, and give a new proof of Hermitian-Einstein metrics implying slope stability.


2022 ◽  
Vol 141 ◽  
pp. 104532
Author(s):  
Samzu Agbaje ◽  
Xue Zhang ◽  
Darren Ward ◽  
Luisa Dhimitri ◽  
Edoardo Patelli

Sign in / Sign up

Export Citation Format

Share Document