Short-term and long-term behaviors of buried corrugated high-density polyethylene (HDPE) pipes

2009 ◽  
Vol 40 (5) ◽  
pp. 404-412 ◽  
Author(s):  
Jun S. Kang ◽  
Taek H. Han ◽  
Young J. Kang ◽  
Chai H. Yoo
Author(s):  
B M Wroblewski

High-density polyethylene (HDP) has been used in clinical practice in total hip replacement since its introduction by Charnley in November 1962. Fears are being expressed that this may be the weakest link and the ultimate cause of failure of the arthroplasty. Long-term clinical experience suggests that loosening may be the primary cause while the presence of HDP wear particles is secondary. Healing of endosteal cavities can take place in the presence of HDP wear particles.


2006 ◽  
Vol 102 (4) ◽  
pp. 3907-3911 ◽  
Author(s):  
Saeed Kazemi Najafi ◽  
Mehdi Tajvidi ◽  
Majid Chaharmahli

2003 ◽  
Vol 1845 (1) ◽  
pp. 182-187
Author(s):  
Steven L. Folkman ◽  
A. P. Moser

Buried parallel pipes are used for storm retention systems. Traditional retention-detention systems have spaced parallel pipes that permit soil columns between pipes. A new design allows for the parallel pipes to be placed side by side in contact with each other. The performance of such a system of bundled high-density polyethylene (HDPE) pipes that is subjected to vertical earth loads is reported. This bundled system consists of parallel HDPE pipes wrapped with a geogrid and a geofabric. The actual loads ranged from shallow cover to vertical loads equivalent to 55 ft (16.8 m) of cover. The embedment soil selected for the research was a silty sand. This soil was selected because its structural qualities are generally considered to be the least acceptable for these types of applications. The soil that typically would be specified is a crushed stone. Therefore, the results from the tests are conservative. Structural performance is reported, and photographs present the pipes in the bundled system during installation and after subjection to earth loads. Load-deflection curves for the pipes in the system are also given.


Author(s):  
Yang Wang ◽  
Hui-qing Lan ◽  
Tao Meng ◽  
Bing Wang ◽  
Du du Guo ◽  
...  

Abstract The purpose of this study was to propose low gas pressure effects on lifetime of natural gas high density polyethylene (HDPE) pipes by thermal-oxidative aging (TOA). The new method to assess the lifetime of HDPE natural gas pipes is based on gas pressure testing. An approach to monitor oxidative induction time (OIT) has been used to predict lifetime. Natural gas HDPE pipes were used to evaluate the effects of low gas pres-sures on oxidative induction time. In order to emphasize the pressure effects, relatively low temperatures at 45, 55, 65 and 75 °C were utilized for the exposure. The low-pressure conditions were created using air at levels of 0, 0.1, 0.2, 0.3 and 0.4 MPa. The property of high density polyethylene pipes was effectively moni-tored using the low pressure oxidative induction time (OIT) test. The results show that the aging reaction rate of high density polyethylene pipes increased exponentially with temperature and gas pressure according to the Arrhenius equation. Analytical models were developed to predict the aging reaction rate and lifetime of natural gas HDPE pipes.


Sign in / Sign up

Export Citation Format

Share Document