molecular structure
Recently Published Documents





2022 ◽  
Vol 8 ◽  
pp. 1249-1256
Sichen Qin ◽  
Rui Liu ◽  
Qian Wang ◽  
Xi Chen ◽  
Zicai Shen ◽  

2022 ◽  
Qianying Liu ◽  
Xiang Zhang ◽  
Hui Huang ◽  
Yuxin Chen ◽  
Fang Wang ◽  

Pendrin SLC26A4 is an anion exchanger expressed in apical membranes of selected epithelia. Pendrin ablation causes Pendred syndrome, a genetic disorder disease associated with sensorineural hearing loss, hypothyroid goiter, and reduced blood pressure. However, its molecular structure has remained unknown limiting our understanding. Here, we determined the structures of mouse pendrin with symmetric and characteristically asymmetric homodimer conformations by cryo-electron microscopy. The asymmetric homodimer consists of an inward-facing protomer and an intermediate-state protomer, representing the coincident uptake and secretion process, and exhibits the unique state of pendrin as an electroneutral exchanger. This previously unrevealed conformation, together with other conformations we captured, provides an inverted alternate-access mechanism for anion exchange. Furthermore, our structural and functional data disclosed the properties of anion exchange cleft and interpreted the important pathogenetic mutations. These investigations shed light on the pendrin exchange mechanism and extend our structure-guided understanding of pathogenetic mutations.

Friction ◽  
2022 ◽  
Yanbin Zhang ◽  
Hao Nan Li ◽  
Changhe Li ◽  
Chuanzhen Huang ◽  
Hafiz Muhammad Ali ◽  

AbstractTo eliminate the negative effect of traditional metal-working fluids and achieve sustainable manufacturing, the usage of nano-enhanced biolubricant (NEBL) is widely researched in minimum quantify lubrication (MQL) machining. It’s improved tool wear and surface integrity have been preliminarily verified by experimental studies. The previous review papers also concluded the major influencing factors of processability including nano-enhancer and lubricant types, NEBL concentration, micro droplet size, and so on. Nevertheless, the complex action of NEBL, from preparation, atomization, infiltration to heat transfer and anti-friction, is indistinct which limits preparation of process specifications and popularity in factories. Especially in the complex machining process, in-depth understanding is difficult and meaningful. To fill this gap, this paper concentrates on the comprehensive quantitative assessment of processability based on tribological, thermal, and machined surface quality aspects for NEBL application in turning, milling, and grinding. Then it attempts to answer mechanisms systematically considering multi-factor influence of molecular structure, physicochemical properties, concentration, and dispersion. Firstly, this paper reveals advanced lubrication and heat transfer mechanisms of NEBL by quantitative comparison with biolubricant-based MQL machining. Secondly, the distinctive filmformation, atomization, and infiltration mechanisms of NEBL, as distinguished from metal-working fluid, are clarified combining with its unique molecular structure and physical properties. Furtherly, the process optimization strategy is concluded based on the synergistic relationship analysis among process variables, physicochemical properties, machining mechanisms, and performance of NEBL. Finally, the future development directions are put forward aiming at current performance limitations of NEBL, which requires improvement on preparation and jet methods respects. This paper will help scientists deeply understand effective mechanism, formulate process specifications, and find future development trend of this technology.

Shuya ASADA ◽  
Akihisa OGINO

Abstract The aim of this study is to form the sulfur defects on monolayer molybdenum disulfide (MoS2) by low temperature microwave plasma treatment suppressing disturbance of molecular structure. CVD-grown and plasma treated multilayer MoS2 surface were analyzed to investigate the effects of H2 and Ar plasma treatment on sulfur defects and molecular structure. It was found that the disturbance of molecular structure was suppressed in the H2 plasma treatment compared to the Ar plasma treatment. Varying the incident ratio of hydrogen ions H+ and radicals H*, the influences of H2 plasma treatment with high and low H*/H+ ratio on monolayer MoS2 structure were discussed. As a result of X-ray photoelectron spectroscopy, Raman spectroscopy and photoluminescence analysis, sulfur defects increased with the increase in total amount of radical incident on MoS2. In addition, it is speculated that the etching with radical contributed to form sulfur defects suppressing the disturbance of molecular structure.

2022 ◽  
pp. 095400832110665
Lian Liu ◽  
Haitao Duan ◽  
Wen Zhan ◽  
Shengpeng Zhan ◽  
Dan Jia ◽  

Exposing engineering plastics to UV irradiation can easily destroy the original molecular structure of the materials and consequently affect their tribological properties. This study investigated the effects of UV irradiation on the molecular structure of typical engineering plastics, such as polytetrafluoroethylene (PTFE) and polyether ether ketone (PEEK), and on their tribological properties under heavy loads (20 MPa). The surface morphology results showed that the appearance of PEEK changed significantly under UV irradiation. However, the change in PTFE was negligible. Under micromorphology, the processing lines of the two materials gradually became lighter with increasing UV irradiation time. The resulting infrared spectra showed that the molecular chains of both materials were broken, and new functional groups were formed under UV irradiation. Tribology testing demonstrated that with prolonged UV irradiation, the average PTFE coefficient of friction remained relatively stable, whereas that of PEEK was approximately 0.55. As the UV irradiation time increased, the wear rate of PTFE increased significantly, whereas that of PEEK showed no significant change.

2022 ◽  
Vol 9 ◽  
Yoshika Takewaki ◽  
Takuji Ogawa ◽  
Yosuke Tani

Modulating the stimulus-responsiveness of a luminescent crystal is challenging owing to the complex interdependent nature of its controlling factors, such as molecular structure, molecular conformation, crystal packing, optical properties, and amorphization behavior. Herein, we demonstrate a halogen-exchange approach that disentangles this problem, thereby realizing the modulation of room-temperature phosphorescence-to-phosphorescence mechanochromism. Replacing the bromine atoms in a brominated thienyl diketone with chlorine atoms afforded isostructural crystals; i.e., molecules with different halogen atoms exhibited the same molecular conformation and crystal packing. Consequently, amorphization behavior toward mechanical stimulation was also the same, and the phosphorescence of amorphous states originated from the same conformer of each diketone. In contrast, the phosphorescence properties of each conformer were modulated differently, which is ascribable to heavy atom effects, resulting in the modulation of the mechanochromism. Thus, halogen exchange is a promising approach for modulating the stimulus-responsive photofunctions of crystals involving spin-forbidden processes.

Ziyang Huang ◽  
Xueqin Lv ◽  
Guoyun Sun ◽  
Xinzhu Mao ◽  
Wei Lu ◽  

Sign in / Sign up

Export Citation Format

Share Document