Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies

2006 ◽  
Vol 84 (22-23) ◽  
pp. 1402-1414 ◽  
Author(s):  
C.M.A. Vasques ◽  
J. Dias Rodrigues
2021 ◽  
Author(s):  
Yong Xia

Vibration control strategies strive to reduce the effect of harmful vibrations such as machining chatter. In general, these strategies are classified as passive or active. While passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, which work by providing an additional energy supply to vibration systems, on the other hand, require more complex algorithms but can be very effective. In this work, a novel artificial neural network-based active vibration control system has been developed. The developed system can detect the sinusoidal vibration component with the highest power and suppress it in one control cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be suppressed. With artificial neural networks trained to cover enough frequency and amplitude ranges, most of the original vibration can be suppressed. The efficiency of the proposed methodology has been verified experimentally in the vibration control of a cantilever beam. Artificial neural networks can be trained automatically for updated time delays in the system when necessary. Experimental results show that the developed active vibration control system is real time, adaptable, robust, effective and easy to be implemented. Finally, an experimental setup of chatter suppression for a lathe has been successfully implemented, and the successful techniques used in the previous artificial neural network-based active vibration control system have been utilized for active chatter suppression in turning.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 2026-2036
Author(s):  
Xiangdong Liu ◽  
Haikuo Liu ◽  
Changkun Du ◽  
Pingli Lu ◽  
Dongping Jin ◽  
...  

The objective of this work was to suppress the vibration of flexible structures by using a distributed cooperative control scheme with decentralized sensors and actuators. For the application of the distributed cooperative control strategy, we first propose the multiple autonomous substructure models for flexible structures. Each autonomous substructure is equipped with its own sensor, actuator, and controller, and they all have computation and communication capabilities. The primary focus of this investigation was to illustrate the use of a distributed cooperative protocol to enable vibration control. Based on the proposed models, we design two novel active vibration control strategies, both of which are implemented in a distributed manner under a communication network. The distributed controllers can effectively suppress the vibration of flexible structures, and a certain degree of interaction cooperation will improve the performance of the vibration suppression. The stability of flexible systems is analyzed by the Lyapunov theory. Finally, numerical examples of a cantilever beam structure demonstrate the effectiveness of the proposed methods.


Author(s):  
Daniel Go¨rges ◽  
Jens Kroneis ◽  
Steven Liu

In this paper a novel concept for active vibration control of storage and retrieval machines is presented. The storage and retrieval machine is modeled based on the Bernoulli-Euler beam theory, yielding an infinite-dimensional model, and the assumed modes method in order to obtain a finite-dimensional model. The resulting model is of low order, a fourth-order model regarding the first and the second eigenfrequency describes the dynamics sufficiently. The model is verified on an experimental storage and retrieval machine. Several active vibration control strategies are studied, including trajectory planning approaches like higher-order trajectory planning, feedforward control approaches like trajectory filtering and input shaping, and feedback control approaches like state-feedback control. The strategies are evaluated by simulation and compared via performance measures.


2001 ◽  
Vol 17 (4) ◽  
pp. 173-177
Author(s):  
Der-An Wang ◽  
Yii-Mai Huang

ABSTRACTActive vibration control of a flexible beam subjected to arbitrary, unmeasurable disturbance forces is investigated in this paper. The concept of independent modal space control is adopted. Both the feedforward and feedback control is implemented here to reduce the beam vibration. Because of the existence of the disturbance forces, the feedforward control is applied by employing the idea of force cancellation. A modal space disturbance force observer is then established in this paper to observe the disturbance modal forces for the feedforward control. For obtaining the feedforward and feedback control gains with the optimal sense, the nearly optimal control law is derived, where the modal disturbance forces are regarded as additional states. The vibration control performances and the asymptotic properties of the control law are discussed.


Sign in / Sign up

Export Citation Format

Share Document