Parametric resonances of rotating composite laminated nonlinear cylindrical shells under periodic axial loads and hygrothermal environment

2021 ◽  
Vol 255 ◽  
pp. 112887
Author(s):  
Xiao Li
2000 ◽  
Author(s):  
A. A. Popov ◽  
J. M. T. Thompson ◽  
F. A. McRobie

Abstract Vibrations of cylindrical shells parametrically excited by external axial forcing or by internal auto-parametric resonances are considered. A Rayleigh-Ritz discretization of the von Kármán-Donnell equations through symbolic computations leads to low dimensional models of shell vibration. After applying methods and ideas of modern dynamical systems theory, complete bifurcation diagrams are constructed and analyzed with an emphasis on modal interactions and their relevance to structural behaviour. In the case of free shell vibrations, the Hamiltonian and a transformation into action-angle coordinates followed by averaging provides readily a geometric description of the interaction between concertina and chequerboard modes. It was established that the interaction should be most pronounced when there are slightly less than 2 N square chequerboard panels circumferentially, where N is the ratio of shell radius to thickness. The two mode interaction leads to preferred vibration patterns with larger deflection inwards than outwards, and at internal resonance, significant energy transfer occurs between the modes. The regular and chaotic features of this interaction are studied analytically and numerically.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiao Li ◽  
Wentao Jiang ◽  
Xiaochao Chen ◽  
Zhihong Zhou

Abstract This work aims to study nonlinear vibration of rotating composite laminated cylindrical shells under hygrothermal environment and radial harmonic excitation. Based on Love’s nonlinear shell theory, and considering the effects of rotation-induced initial hoop tension, centrifugal and Coriolis forces, the nonlinear partial differential equations of the shells are derived by Hamilton’s principle, in which the constitutive relation and material properties of the shells are both hygrothermal-dependent. Then, the Galerkin approach is applied to discrete the nonlinear partial differential equations, and the multiple scales method is adopted to obtain an analytical solution on the dynamic response of the nonlinear shells under primary resonances of forward and backward traveling wave, respectively. The stability of the solution is determined by using the Routh–Hurwitz criterion. Some interesting results on amplitude–frequency relations and nonlinear dynamic responses of the shells are proposed. Special attention is given to the combined effects of temperature and moisture concentration on nonlinear resonance behavior of the shells.


Author(s):  
Francesco Pellicano

In the present paper the dynamic stability of circular cylindrical shells is investigated; the combined effect of compressive static and periodic axial loads is considered. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration; Lagrange equations are used to reduce the nonlinear partial differential equations to a set of ordinary differential equations. The dynamic stability is investigated using direct numerical simulation and a dichotomic algorithm to find the instability boundaries as the excitation frequency is varied; the effect of geometric imperfections is investigated in detail. The accuracy of the approach is checked by means of comparisons with the literature.


Author(s):  
F. Pellicano ◽  
M. Amabili ◽  
M. P. Pai¨doussis

In the present study the dynamic stability of simply supported, circular cylindrical shells subjected to dynamic axial loads is analyzed. Geometric nonlinearities due to finite-amplitude shell motion are considered by using the Donnell’s nonlinear shallow-shell theory. The effect of structural damping is taken into account. A discretization method based on a series expansion involving a large number of linear modes, including axisymmetric and asymmetric modes, and on the Galerkin procedure is developed. Both driven and companion modes are included allowing for travelling-wave response of the shell. Axisymmetric modes are included because they are essential in simulating the inward deflection of the mean oscillation with respect to the equilibrium position. The shell is simply supported and presents a finite length. Boundary conditions are considered in the model, which includes also the contribution of the external axial loads acting at the shell edges. The effect of a contained liquid is also considered. The linear dynamic stability and nonlinear response are analysed by using continuation techniques.


Sign in / Sign up

Export Citation Format

Share Document