Stability of Empty and Fluid-Filled Circular Cylindrical Shells Subjected to Dynamic Axial Loads

Author(s):  
F. Pellicano ◽  
M. Amabili ◽  
M. P. Pai¨doussis

In the present study the dynamic stability of simply supported, circular cylindrical shells subjected to dynamic axial loads is analyzed. Geometric nonlinearities due to finite-amplitude shell motion are considered by using the Donnell’s nonlinear shallow-shell theory. The effect of structural damping is taken into account. A discretization method based on a series expansion involving a large number of linear modes, including axisymmetric and asymmetric modes, and on the Galerkin procedure is developed. Both driven and companion modes are included allowing for travelling-wave response of the shell. Axisymmetric modes are included because they are essential in simulating the inward deflection of the mean oscillation with respect to the equilibrium position. The shell is simply supported and presents a finite length. Boundary conditions are considered in the model, which includes also the contribution of the external axial loads acting at the shell edges. The effect of a contained liquid is also considered. The linear dynamic stability and nonlinear response are analysed by using continuation techniques.

Author(s):  
Francesco Pellicano

In the present paper the dynamic stability of circular cylindrical shells is investigated; the combined effect of compressive static and periodic axial loads is considered. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration; Lagrange equations are used to reduce the nonlinear partial differential equations to a set of ordinary differential equations. The dynamic stability is investigated using direct numerical simulation and a dichotomic algorithm to find the instability boundaries as the excitation frequency is varied; the effect of geometric imperfections is investigated in detail. The accuracy of the approach is checked by means of comparisons with the literature.


2001 ◽  
Vol 69 (2) ◽  
pp. 117-129 ◽  
Author(s):  
M. Amabili ◽  
F. Pellicano

The aeroelastic stability of simply supported, circular cylindrical shells in supersonic flow is investigated by using both linear aerodynamics (first-order piston theory) and nonlinear aerodynamics (third-order piston theory). Geometric nonlinearities, due to finite amplitude shell deformations, are considered by using the Donnell’s nonlinear shallow-shell theory, and the effect of viscous structural damping is taken into account. The system is discretized by Galerkin method and is investigated by using a model involving up to 22 degrees-of-freedom, allowing for travelling-wave flutter around the shell and axisymmetric contraction of the shell. Asymmetric and axisymmetric geometric imperfections of circular cylindrical shells are taken into account. Numerical calculations are carried out for a very thin circular shell at fixed Mach number 3 tested at the NASA Ames Research Center. Results show that the system loses stability by travelling-wave flutter around the shell through supercritical bifurcation. Nonsimple harmonic motion is observed for sufficiently high post-critical dynamic pressure. A very good agreement between theoretical and existing experimental data has been found for the onset of flutter, flutter amplitude, and frequency. Results show that onset of flutter is very sensible to small initial imperfections of the shells. The influence of pressure differential across the shell skin has also been deeply investigated. The present study gives, for the first time, results in agreement with experimental data obtained at the NASA Ames Research Center more than three decades ago.


2000 ◽  
Author(s):  
M. Amabili ◽  
F. Pellicano ◽  
M. P. Païdoussis

Abstract The large-amplitude response of thin, simply supported circular cylindrical shells to a harmonic excitation in the spectral neighbourhood of one of the lowest natural frequencies is investigated. Donnell’s nonlinear shallow-shell theory is used and the solution is obtained by Galerkin projection. A mode expansion including driven and companion modes, axisymmetric modes and additional asymmetric modes is used. In particular, asymmetric modes with twice the number of circumferential waves of driven and companion modes are included in the analysis. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The equations of motion are studied by using a code based on the Collocation Method. Validation of the present model is obtained by comparison with other authoritative results and new experimental results. The effect of the number of axisymmetric modes used in the expansion on the response of the shell is investigated, clarifying questions open for a long time. The contribution of additional longitudinal modes is absolutely insignificant in both the driven and companion mode responses. The effect of modes with harmonics of the circumferential mode number n under consideration is limited so far as the trend of nonlinearity is concerned, but is significant in the response with companion mode participation for lightly damped shells (empty shells). Results show the occurrence of travelling wave response in the proximity of the resonance frequency, the fundamental role of the first and third axisymmetric modes in the expansion of the radial deflection with one longitudinal half-wave, and limit cycle responses. A liquid (water) contained in the shell generates a much stronger softening behaviour of the system. Experiments with a water-filled circular cylindrical shell made of steel are in very good agreement with the present theory.


2000 ◽  
Author(s):  
F. Pellicano ◽  
M. Amabili ◽  
M. P. Païdoussis

Abstract The response of a shell conveying fluid to harmonic excitation, in the spectral neighbourhood of one of the lowest natural frequencies, is investigated for different flow velocities. Nonlinearities due to moderately large amplitude shell motion are considered by using the nonlinear Donnell shallow shell theory. Linear potential flow theory is applied to describe the fluid-structure interaction by using the model proposed by Païdoussis and Denise. For different amplitude and frequency of the excitation and for different flow velocities, the following are investigated numerically: (i) periodic response of the system; (ii) unsteady and stochastic motion; (iii) loss of stability by jumps to bifurcated branches. The effect of the flow velocity on the nonlinear periodic response of the system has also been investigated. Poincaré maps and bifurcation diagrams are used to study the unsteady and stochastic dynamics of the system. Amplitude-modulated motions, multi-periodic solutions, chaotic responses and the so-called “blue sky catastrophe” phenomenon have been observed for different values of the system parameters; the latter two have been predicted here probably for the first time for the dynamics of circular cylindrical shells.


2019 ◽  
Vol 25 (18) ◽  
pp. 2494-2508 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Meskini

In this research, investigations are presented of the free vibration of porous laminated rotating circular cylindrical shells based on Love’s shell theory with simply supported boundary conditions. The equilibrium equations for circular cylindrical shells are obtained using Hamilton’s principle. Also, Navier’s solution is used to solve the equations of the cylindrical shell due to the simply supported boundary conditions. The results are compared with previous results of other researchers. The numerical result of this study indicates that with increase of the porosity coefficient the nondimensional backward and forward frequency decreased. Then the results of the free vibration of rotating cylindrical shells are presented in terms of the effects of porous coefficients, porous type, length to radius ratio, rotating speed, and axial and circumferential wave numbers.


1991 ◽  
Vol 15 (2) ◽  
pp. 147-159
Author(s):  
J.L. Urrutia-Galicia ◽  
L.J. Arango

The fundamental frequencies and modes of free vibration of simply supported circular cylindrical shells are explored. The results include the fundamental frequencies ωmn and the modes (m,n) of steel cylindrical shells which are presented in the form of a nomogram, see Figure 6. Besides, single more general formulas are given for cylindrical shells made out of any elastic material which turn out to be very suitable for design and analysis purposes.


Sign in / Sign up

Export Citation Format

Share Document