Imperfection Sensitivity of Compressed Circular Cylindrical Shells Under Periodic Axial Loads
In the present paper the dynamic stability of circular cylindrical shells is investigated; the combined effect of compressive static and periodic axial loads is considered. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration; Lagrange equations are used to reduce the nonlinear partial differential equations to a set of ordinary differential equations. The dynamic stability is investigated using direct numerical simulation and a dichotomic algorithm to find the instability boundaries as the excitation frequency is varied; the effect of geometric imperfections is investigated in detail. The accuracy of the approach is checked by means of comparisons with the literature.