Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory

2021 ◽  
Vol 264 ◽  
pp. 113712 ◽  
Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Mohammed-Sid-Ahmed Houari ◽  
Ahmed Amine Daikh ◽  
Aman Garg ◽  
Tarek Merzouki ◽  
...  
Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Abdelhak Khechai ◽  
Aicha Bessaim ◽  
Mohammed-Sid-Ahmed Houari ◽  
Aman Garg ◽  
...  

In this paper, the bending behavior of functionally graded single-layered, symmetric and non-symmetric sandwich beams is investigated according to a new higher order shear deformation theory. Based on this theory, a novel parabolic shear deformation function is developed and applied to investigate the bending response of sandwich beams with homogeneous hardcore and softcore. The present theory provides an accurate parabolic distribution of transverse shear stress across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the functionally graded sandwich beam without using any shear correction factors. The governing equations derived herein are solved by employing the finite element method using a two-node beam element, developed for this purpose. The material properties of functionally graded sandwich beams are graded through the thickness according to the power-law distribution. The predictive capability of the proposed finite element model is demonstrated through illustrative examples. Four types of beam support, i.e. simply-simply, clamped-free, clamped–clamped, and clamped-simply, are used to study how the beam deflection and both axial and transverse shear stresses are affected by the variation of volume fraction index and beam length-to-height ratio. Results of the numerical analysis have been reported and compared with those available in the open literature to evaluate the accuracy and robustness of the proposed finite element model. The comparisons with other higher order shear deformation theories verify that the proposed beam element is accurate, presents fast rate of convergence to the reference results and it is also valid for both thin and thick functionally graded sandwich beams. Further, some new results are reported in the current study, which will serve as a benchmark for future research.


2020 ◽  
Vol 57 (6A) ◽  
pp. 77
Author(s):  
Nguyen Van Chinh

In this paper, static bending of two-direction functionally graded sandwich (2D-FGSW) plates is studied by using a finite element model. The plates consist of a homogeneous core and two functionally graded skin layers with material properties being graded in both the thickness and length directions by power gradation laws. Based on a third-order shear deformation theory, a finite element model is derived and employed in the analysis. Bending characteristics, including deflections and stresses are evaluated for the plates with classical boundary conditions under various types of distributed load. The effects of material distribution and layer thickness ratio on the static bending behavior of the plates are examined and highlighted.


2020 ◽  
Vol 57 (6A) ◽  
pp. 77
Author(s):  
Nguyen Van Chinh

In this paper, static bending of two-direction functionally graded sandwich (2D-FGSW) plates is studied by using a finite element model. The plates consist of a homogeneous core and two functionally graded skin layers with material properties being graded in both the thickness and length directions by power gradation laws. Based on a third-order shear deformation theory, a finite element model is derived and employed in the analysis. Bending characteristics, including deflections and stresses are evaluated for the plates with classical boundary conditions under various types of distributed load. The effects of material distribution and layer thickness ratio on the static bending behavior of the plates are examined and highlighted.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Supen Kumar Sah ◽  
Anup Ghosh

Purpose The purpose of this paper is to carry out free vibration and buckling analysis of functionally graded material (FGM) plate. Design/methodology/approach Equilibrium and stability equations of FGM rectangular plate under different boundary conditions are derived using finite element method-based inverse trigonometric shear deformation theory (ITSDT). Eight-noded rectangular plate element with seven degrees of freedom at each node is used for the present analysis. The power-law distribution method has been considered for the continuously graded variation in composition of the ceramic and metal phases across the thickness of a functionally graded plate. Findings The finite element formulation incorporated with ITSDT and provisions of the constitutive model of FGM plate has been implemented in a numerical code to obtain the natural frequency and critical buckling load under uniaxial and biaxial compressive load. The influence of material gradation, volume fraction index, span to thickness ratio and boundary constraints over free vibration and buckling response has been studied. Originality/value Development and validation of finite element methodology using ITSDT to predict the structural response of the FGM plates under different loading, geometric and boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document