flexural vibrations
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 31)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 1191 (1) ◽  
pp. 012010
Author(s):  
A.A. Pozhalostin ◽  
A.V. Panshina
Keyword(s):  

2021 ◽  
pp. 116554
Author(s):  
Loris Dal Bo ◽  
Haonan He ◽  
Paolo Gardonio ◽  
Yuan Li ◽  
Jason Zheng Jiang

Author(s):  
Michael H. Meylan ◽  
Muhammad Ilyas ◽  
Bishnu P. Lamichhane ◽  
Luke G. Bennetts

A solution method is developed for a linear model of ice shelf flexural vibrations in response to ocean waves, in which the ice shelf thickness and seabed beneath the ice shelf vary over distance, and the ice shelf/sub–ice-shelf cavity are connected to the open ocean. The method combines a decomposition of the ice shelf displacement profile at a prescribed frequency of motion into mode shapes of free vibrations, a finite-element method for the cavity water motion and a non-local operator to connect to the open ocean. An investigation is conducted into the effects of ice shelf thickening, seabed shoaling and the grounding-line conditions on time-harmonic ice shelf vibrations, induced by regular incident waves in the swell regime. Furthermore, results are given for ice shelf vibrations in response to irregular incident waves by superposing time-harmonic responses, and ocean-to-ice-shelf transfer functions are derived. The findings add to evidence that ice shelves experience appreciable flexural vibrations in response to swell, and that ice shelf thickening and seabed shoaling can have a considerable influence on predictions of how ice shelves respond to ocean waves.


2021 ◽  
Vol 144 (3) ◽  
Author(s):  
Anahita Zargarani ◽  
S. Nima Mahmoodi

Abstract This paper aims to investigate the free coupled flexural–torsional vibrations of a double-cantilever structure. The structure consists of two identical Euler–Bernoulli cantilever beams with a piezoelectric layer on top. The beams are connected by a rigid tip connection at their free ends. The double-cantilever structure in this study vibrates in two distinct modes: flexural mode or coupled flexural–torsional mode. The flexural mode refers to the in-phase flexural vibrations of the two cantilever beams resulting in translation of the tip connection, while the coupled flexural–torsional mode refers to the coupled flexural–torsional vibrations of the cantilever beams resulting in rotation of the tip connection. The latter is the main interest of this research. The governing equations of motion and boundary conditions are developed using Hamilton’s principle. Two uncoupled equations are realized for each beam: one corresponding to the flexural vibrations and the other one corresponding to the torsional vibrations. The characteristic equations for both the flexural and the coupled flexural–torsional vibration modes are derived and solved to find the natural frequencies corresponding to each mode of vibration. The orthogonality condition among the mode shapes is derived and utilized to determine the modal coefficients corresponding to each mode of vibration. Moreover, the analytical and experimental investigations show that the coupled flexural–torsional fundamental frequency of the structure is dependent on dimensional parameters including the length of the cantilever beams and the length of the tip connection.


2021 ◽  
Author(s):  
Krzysztof Magnucki ◽  
Ewa Magnucka-Blandzi ◽  
Szymon Milecki ◽  
Damian Goliwąs ◽  
Leszek Wittenbeck

AbstractThe subject of the paper are homogeneous beams of symmetrically variable depth and bisymmetrical cross sections. Free flexural vibrations of these beams are analytically and numerically studied. Based on Hamilton’s principle, the differential equations of motion of these beams are obtained. The equations of motion are analytically solved with consideration of the bending lines of these beams subjected to their own weight. The fundamental natural frequency for exemplary beams is derived and presented in Tables and Figures.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3926
Author(s):  
Mengen Li ◽  
Qiaoyun Zhang ◽  
Bingbing Wang ◽  
Minghao Zhao

The performance of devices fabricated from piezoelectric semiconductors, such as sensors and actuators in microelectromechanical systems, is superior; furthermore, plate structures are the core components of these smart devices. It is thus important to analyze the electromechanical coupling properties of piezoelectric semiconductor nanoplates. We established a nanoplate model for the piezoelectric semiconductor plate structure by extending the first-order shear deformation theory. The flexural vibrations of nanoplates subjected to a transversely time-harmonic force were investigated. The vibrational modes and natural frequencies were obtained by using the matrix eigenvalue solver in COMSOL Multiphysics 5.3a, and the convergence analysis was carried out to guarantee accurate results. In numerical cases, the tuning effect of the initial electron concentration on mechanics and electric properties is deeply discussed. The numerical results show that the initial electron concentration greatly affects the natural frequency and electromechanical fields of piezoelectric semiconductors, and a high initial electron concentration can reduce the electromechanical fields and the stiffness of piezoelectric semiconductors due to the electron screening effect. We analyzed the flexural vibration of typical piezoelectric semiconductor plate structures, which provide theoretical guidance for the development of new piezotronic devices.


2021 ◽  
Author(s):  
Marek Lubecki ◽  
Michał Stosiak ◽  
Mirosław Bocian ◽  
Kamil Urbanowicz

Abstract The paper presents experimental research and mathematical modeling of flexural vibrations of a composite hydraulic microhose. The tested object was a Polyflex 2020N-013V30 hydraulic microhose, consisting of a braided aramid layer placed in a thermoplastic matrix. The vibrations were induced with an external electromagnetic exciter in the range from 0 Hz to 100 Hz using the sweep function. Using a laser vibrometer, the exciter’s displacement was measured in the above-mentioned range. Long exposure photographs were taken to identify the form of microhose’s vibrations as well as to measure it’s amplitude. The existence of considerable non-linearity in subsequent natural frequencies was shown. At the same time, mathematical simulations were carried out using the Mathematica software. For the analytical description of the object’s vibrations partial differential equations based on the string equation were used. A part responsible for damping in the material was added to the classical equation of the string. The dependence of the values of the stiffness and damping coefficients a on the excitation frequency made it possible to model nonlinearities manifested by the upward shift of higher natural frequencies and the suppression of the amplitudes of successive modes. Further development of the proposed model will allow for modeling the internal pressure in the hose and its effect on transverse vibrations. It will also allow to design of vibrations of composite microhoses and avoid the coupling of these vibrations with external excitations.


2021 ◽  
pp. 1-20
Author(s):  
A. L. Morales ◽  
J. M. Chicharro ◽  
E. Palomares ◽  
C. Ramiro ◽  
A. J. Nieto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document