scholarly journals Effect sizes and intra-cluster correlation coefficients measured from the Green Dot High School study for guiding sample size calculations when designing future violence prevention cluster randomized trials in school settings

Author(s):  
Tofial Azam ◽  
Heather M. Bush ◽  
Ann L. Coker ◽  
Philip M. Westgate
2021 ◽  
pp. 174077452110208
Author(s):  
Elizabeth Korevaar ◽  
Jessica Kasza ◽  
Monica Taljaard ◽  
Karla Hemming ◽  
Terry Haines ◽  
...  

Background: Sample size calculations for longitudinal cluster randomised trials, such as crossover and stepped-wedge trials, require estimates of the assumed correlation structure. This includes both within-period intra-cluster correlations, which importantly differ from conventional intra-cluster correlations by their dependence on period, and also cluster autocorrelation coefficients to model correlation decay. There are limited resources to inform these estimates. In this article, we provide a repository of correlation estimates from a bank of real-world clustered datasets. These are provided under several assumed correlation structures, namely exchangeable, block-exchangeable and discrete-time decay correlation structures. Methods: Longitudinal studies with clustered outcomes were collected to form the CLustered OUtcome Dataset bank. Forty-four available continuous outcomes from 29 datasets were obtained and analysed using each correlation structure. Patterns of within-period intra-cluster correlation coefficient and cluster autocorrelation coefficients were explored by study characteristics. Results: The median within-period intra-cluster correlation coefficient for the discrete-time decay model was 0.05 (interquartile range: 0.02–0.09) with a median cluster autocorrelation of 0.73 (interquartile range: 0.19–0.91). The within-period intra-cluster correlation coefficients were similar for the exchangeable, block-exchangeable and discrete-time decay correlation structures. Within-period intra-cluster correlation coefficients and cluster autocorrelations were found to vary with the number of participants per cluster-period, the period-length, type of cluster (primary care, secondary care, community or school) and country income status (high-income country or low- and middle-income country). The within-period intra-cluster correlation coefficients tended to decrease with increasing period-length and slightly decrease with increasing cluster-period sizes, while the cluster autocorrelations tended to move closer to 1 with increasing cluster-period size. Using the CLustered OUtcome Dataset bank, an RShiny app has been developed for determining plausible values of correlation coefficients for use in sample size calculations. Discussion: This study provides a repository of intra-cluster correlations and cluster autocorrelations for longitudinal cluster trials. This can help inform sample size calculations for future longitudinal cluster randomised trials.


2018 ◽  
Vol 16 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Philip M Westgate

Background/aims Cluster randomized trials are popular in health-related research due to the need or desire to randomize clusters of subjects to different trial arms as opposed to randomizing each subject individually. As outcomes from subjects within the same cluster tend to be more alike than outcomes from subjects within other clusters, an exchangeable correlation arises that is measured via the intra-cluster correlation coefficient. Intra-cluster correlation coefficient estimation is especially important due to the increasing awareness of the need to publish such values from studies in order to help guide the design of future cluster randomized trials. Therefore, numerous methods have been proposed to accurately estimate the intra-cluster correlation coefficient, with much attention given to binary outcomes. As marginal models are often of interest, we focus on intra-cluster correlation coefficient estimation in the context of fitting such a model with binary outcomes using generalized estimating equations. Traditionally, intra-cluster correlation coefficient estimation with generalized estimating equations has been based on the method of moments, although such estimators can be negatively biased. Furthermore, alternative estimators that work well, such as the analysis of variance estimator, are not as readily applicable in the context of practical data analyses with generalized estimating equations. Therefore, in this article we assess, in terms of bias, the readily available residual pseudo-likelihood approach to intra-cluster correlation coefficient estimation with the GLIMMIX procedure of SAS (SAS Institute, Cary, NC). Furthermore, we study a possible corresponding approach to confidence interval construction for the intra-cluster correlation coefficient. Methods We utilize a simulation study and application example to assess bias in intra-cluster correlation coefficient estimates obtained from GLIMMIX using residual pseudo-likelihood. This estimator is contrasted with method of moments and analysis of variance estimators which are standards of comparison. The approach to confidence interval construction is assessed by examining coverage probabilities. Results Overall, the residual pseudo-likelihood estimator performs very well. It has considerably less bias than moment estimators, which are its competitor for general generalized estimating equation–based analyses, and therefore, it is a major improvement in practice. Furthermore, it works almost as well as analysis of variance estimators when they are applicable. Confidence intervals have near-nominal coverage when the intra-cluster correlation coefficient estimate has negligible bias. Conclusion Our results show that the residual pseudo-likelihood estimator is a good option for intra-cluster correlation coefficient estimation when conducting a generalized estimating equation–based analysis of binary outcome data arising from cluster randomized trials. The estimator is practical in that it is simply a result from fitting a marginal model with GLIMMIX, and a confidence interval can be easily obtained. An additional advantage is that, unlike most other options for performing generalized estimating equation–based analyses, GLIMMIX provides analysts the option to utilize small-sample adjustments that ensure valid inference.


2011 ◽  
Vol 8 (6) ◽  
pp. 687-698 ◽  
Author(s):  
Catherine M Crespi ◽  
Weng Kee Wong ◽  
Sheng Wu

Background and Purpose Power and sample size calculations for cluster randomized trials require prediction of the degree of correlation that will be realized among outcomes of participants in the same cluster. This correlation is typically quantified as the intraclass correlation coefficient (ICC), defined as the Pearson correlation between two members of the same cluster or proportion of the total variance attributable to variance between clusters. It is widely known but perhaps not fully appreciated that for binary outcomes, the ICC is a function of outcome prevalence. Hence, the ICC and the outcome prevalence are intrinsically related, making the ICC poorly generalizable across study conditions and between studies with different outcome prevalences. Methods We use a simple parametrization of the ICC that aims to isolate that part of the ICC that measures dependence among responses within a cluster from the outcome prevalence. We incorporate this parametrization into sample size calculations for cluster randomized trials and compare our method to the traditional approach using the ICC. Results Our dependence parameter, R, may be less influenced by outcome prevalence and has an intuitive meaning that facilitates interpretation. Estimates of R from previous studies can be obtained using simple statistics. Comparison of methods showed that the traditional ICC approach to sample size determination tends to overpower studies under many scenarios, calling for more clusters than truly required. Limitations The methods are developed for equal-sized clusters, whereas cluster size may vary in practice. Conclusions The dependence parameter R is an alternative measure of dependence among binary outcomes in cluster randomized trials that has a number of advantages over the ICC.


2015 ◽  
Vol 42 ◽  
pp. 41-50 ◽  
Author(s):  
Fei Gao ◽  
Arul Earnest ◽  
David B. Matchar ◽  
Michael J. Campbell ◽  
David Machin

Sign in / Sign up

Export Citation Format

Share Document