scholarly journals EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte

2016 ◽  
Vol 110 ◽  
pp. 23-34 ◽  
Author(s):  
Y.A.N. Maocheng ◽  
X.U. Jin ◽  
Y.U. Libao ◽  
W.U. Tangqing ◽  
S.U.N. Cheng ◽  
...  
2010 ◽  
Vol 52 (11) ◽  
pp. 3750-3756 ◽  
Author(s):  
A. Eslami ◽  
B. Fang ◽  
R. Kania ◽  
B. Worthingham ◽  
J. Been ◽  
...  

2011 ◽  
Vol 53 (6) ◽  
pp. 2318-2327 ◽  
Author(s):  
A. Eslami ◽  
R. Kania ◽  
B. Worthingham ◽  
G.V. Boven ◽  
R. Eadie ◽  
...  

2012 ◽  
Vol 48 (10) ◽  
pp. 1267 ◽  
Author(s):  
Zhiying WANG ◽  
Jianqiu WANG ◽  
En-hou HAN ◽  
Wei KE ◽  
Maocheng YAN ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 36876-36885 ◽  
Author(s):  
Bingying Wang ◽  
Yu Yin ◽  
Zhiwei Gao ◽  
Zhenbo Hou ◽  
Wenchun Jiang

A developed surface enhancement technique, USRP, was applied on X80 pipeline steel and the stress corrosion cracking susceptibility was studied.


Author(s):  
Abdoulmajid Eslami ◽  
Mohammadhassan Marvasti ◽  
Weixing Chen ◽  
Reg Eadie ◽  
Richard Kania ◽  
...  

In order to improve our understanding of near-neutral pH SCC initiation mechanism(s), a comprehensive test setup was used to study the electrochemical conditions beneath the disbonded coatings in cracking environments. In this setup the synergistic effects of cyclic loading, coating disbondment, and cathodic protection were considered. Our previous results showed that there can be a significant variation in the pH of the localized environment under the disbonded coating of pipeline steel. The pH inside the disbondment can change significantly from near-neutral to high pH values, strongly depending on the level of cathodic protection and CO2 concentration. Both of these variables affected the electrochemical conditions on the steel surface and therefore the initiation mechanisms. This work highlights the role of electrochemical conditions in near-neutral pH SCC initiation mechanisms.


Author(s):  
Pellumb Jakupi ◽  
Bill Santos ◽  
Wilfred Binns ◽  
Ivan Barker ◽  
Jenny Been

Newly designed miniature Compact Tension (CT) specimens, designed according to standard ASTM dimension ratios, and machined out of previously in-service X65 pipeline steel were exposed to super-imposed cyclic loading at high mean stresses in NS4 solution to determine the behaviour of X65 steel to ripple loading under near neutral pH conditions. Electron Back-Scatter Diffraction (EBSD) was used to study the microstructural grain geometry to determine if it influences stress-corrosion cracking (SCC) initiation and propagation. Prior to ripple load testing, finely polished X65 surfaces were subjected to EBSD measurements to characterize the microstructure’s geometry; i.e., grain and grain boundary orientations and texture. On the same locations where EBSD maps were recorded, a grid of cross-shaped resist markings — approximately 1–5 μm in size — were deposited every 15 μm across the analyzed surfaces. Following microscopic analyses the specimens were pre-cracked and re-examined to determine whether the crack initiation procedure preconditions the residual strain (quantified by grain misorientations) around an induced crack. Then, ripple load testing at stress levels characterized by load ratios (R) greater than 0.9 was performed, while simultaneously monitoring the open-circuit potential (OCP) at room temperature. The originally characterized surface was again re-examined to determine if the crack tip propagated preferably along a specific crystallographic grain orientation by comparing the shifts in each cross-shaped grid. Results from this investigation will help determine if there is a link between microstructural grain geometries and transgranular stress corrosion cracking.


Sign in / Sign up

Export Citation Format

Share Document