Influence of strain rate on the stress corrosion cracking of X70 pipeline steel in dilute near-neutral pH solutions

Author(s):  
B. Fang ◽  
J.Q. Wang ◽  
E. Han ◽  
Z. Zhu ◽  
W. Ke
CORROSION ◽  
2010 ◽  
Vol 66 (1) ◽  
pp. 015006-015006-6 ◽  
Author(s):  
Z. Y. Liu ◽  
X. G. Li ◽  
C. W. Du ◽  
L. X. Wang ◽  
Y. Z. Huang

RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 36876-36885 ◽  
Author(s):  
Bingying Wang ◽  
Yu Yin ◽  
Zhiwei Gao ◽  
Zhenbo Hou ◽  
Wenchun Jiang

A developed surface enhancement technique, USRP, was applied on X80 pipeline steel and the stress corrosion cracking susceptibility was studied.


Author(s):  
Pellumb Jakupi ◽  
Bill Santos ◽  
Wilfred Binns ◽  
Ivan Barker ◽  
Jenny Been

Newly designed miniature Compact Tension (CT) specimens, designed according to standard ASTM dimension ratios, and machined out of previously in-service X65 pipeline steel were exposed to super-imposed cyclic loading at high mean stresses in NS4 solution to determine the behaviour of X65 steel to ripple loading under near neutral pH conditions. Electron Back-Scatter Diffraction (EBSD) was used to study the microstructural grain geometry to determine if it influences stress-corrosion cracking (SCC) initiation and propagation. Prior to ripple load testing, finely polished X65 surfaces were subjected to EBSD measurements to characterize the microstructure’s geometry; i.e., grain and grain boundary orientations and texture. On the same locations where EBSD maps were recorded, a grid of cross-shaped resist markings — approximately 1–5 μm in size — were deposited every 15 μm across the analyzed surfaces. Following microscopic analyses the specimens were pre-cracked and re-examined to determine whether the crack initiation procedure preconditions the residual strain (quantified by grain misorientations) around an induced crack. Then, ripple load testing at stress levels characterized by load ratios (R) greater than 0.9 was performed, while simultaneously monitoring the open-circuit potential (OCP) at room temperature. The originally characterized surface was again re-examined to determine if the crack tip propagated preferably along a specific crystallographic grain orientation by comparing the shifts in each cross-shaped grid. Results from this investigation will help determine if there is a link between microstructural grain geometries and transgranular stress corrosion cracking.


Sign in / Sign up

Export Citation Format

Share Document