Statistical comparisons of sediment particle size distributions

2021 ◽  
pp. 104548
Author(s):  
Jon Barry ◽  
Claire Mason ◽  
Lydia McIntyre-Brown ◽  
Keith M. Cooper
Author(s):  
S. Roberson ◽  
G.J. Weltje

AbstractEstimates of particle-size made by operators in the field and laboratory represent a vast and relatively untapped data archive. The wide spatial distribution of particle-size estimates makes them ideal for constructing geological models and soil maps. This study uses a large data set from the Netherlands (n = 4837) containing both operator estimates of particle-size and complete particle-size distributions measured by laser granulometry. Operator estimates are inaccurate and imprecise relative to measured laser data; only 16.68% of samples were successfully classified using the Dutch classification scheme for fine sediment. Operator estimates of sediment particle-size encompass the same range of percentage values as particle-size distributions measured by laser analysis. However, the distributions measured by laser analysis show that most of the sand percentage values lie between 0 and 1, so the majority of the variability in the data is lost because operator estimates are made to the nearest 1% at best, and more frequently to the nearest 5%. Operator estimates made by three technicians trained by the Geological Survey of the Netherlands are found not to be influenced by bias, rather they exhibit very similar levels of accuracy and precision. This study compares five different methods of modelling complete particle-size distributions from sparse data: (i) a four-part Pearson's probability distribution function, (i) a log-linear interpolation, (iii) a logit-linear interpolation, (iv) a logistic probability distribution function and (v) a logit constrained cubic-spline (logit-CCS) interpolation. The logit-CCS interpolation performed best across all the samples used, although the performance of all models was very similar for normal Gaussian, skewed and peaked distributions. Predictions for bimodal distributions using the Pearson's, logit-linear and logistic models are markedly less accurate than both log-linear and logit-CCS interpolation models. Although the logit-CCS interpolation model produces the best predictions of continuous particle-size distributions, the low accuracy and precision of operator estimates does not warrant the use of such a complex algorithm. Given this, it is suggested that a standard log-linear interpolation is the most effective means of modelling complete particle-size distributions from sparse data. Interpolation-based models are recommended over probability distribution functions because they allow for a greater degree of flexibility and will always honour the available input data.


CATENA ◽  
2018 ◽  
Vol 160 ◽  
pp. 57-67 ◽  
Author(s):  
Jinshi Lin ◽  
Gaoli Zhu ◽  
Jia Wei ◽  
Fangshi Jiang ◽  
Ming-kuang Wang ◽  
...  

Author(s):  
S. Roberson ◽  
G.J. Weltje

The article Modelling particle-size distributions from operator estimates of sediment particles (Roberson & Weltje, 2014) has been withdrawn due to a misunderstanding about the permission required for the underlying data on which the reported results relied. The editors expect the article to be rewritten and republished in collaboration with the owners of the data, the Geological Survey of the Netherlands, as soon as practicably possible, and apologise for any inconvenience caused.


2004 ◽  
Vol 50 (169) ◽  
pp. 157-170 ◽  
Author(s):  
Bryn Hubbard ◽  
Neil Glasser ◽  
Michael Hambrey ◽  
James Etienne

AbstractDebris bands associated with supraglacial moraines and associated basal deposits have been logged and sampled for their ice and debris at three glaciers in northwest Spitsbergen, Svalbard. Physical properties, including sediment concentrations, sediment particle-size distributions, clast macro-fabrics, and oxygen isotope compositions, indicate that all transverse and some longitudinal debris bands originate from the basal zone of these glaciers. Transverse supraglacial bands are composed of extensive stratified-facies basal ice that is enriched in 18O and which contains polymodal debris with spatially consistent clast fabrics. These properties suggest initial formation as basal ice and subsequent elevation into an englacial position by thrusting rather than formation as crevasse fills. The formation of longitudinal debris bands results from laterally compressive folding in response to the convergence of multiple flow units into a narrow glacier tongue. In common with transverse debris bands, longitudinal bands appear to be composed of stratified basal ice. The bands exposed at the surface of austre Brøggerbreen comprise two subfacies, strongly suggesting that the glacier was at least partially warm-based in the past, when the basal ice formed.


1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

Sign in / Sign up

Export Citation Format

Share Document