Journal of Glaciology
Latest Publications


TOTAL DOCUMENTS

9005
(FIVE YEARS 353)

H-INDEX

132
(FIVE YEARS 7)

Published By Cambridge University Press

1727-5652, 0022-1430

2022 ◽  
pp. 1-15
Author(s):  
Kévin Fourteau ◽  
Pascal Hagenmuller ◽  
Jacques Roulle ◽  
Florent Domine

Abstract Heated needle probes provide the most convenient method to measure snow thermal conductivity. Recent studies have suggested that this method underestimates snow thermal conductivity; however the reasons for this discrepancy have not been elucidated. We show that it originates from the fact that, while the theory behind the method assumes that the measurements reach a logarithmic regime, this regime is not reached within the standard measurement procedure. Using the needle probe without this logarithmic regime leads to thermal conductivity underestimations of tens of percents. Moreover, we show that the poor thermal contact between the probe and the snow due to insertion damages results in a further underestimation. Thus, we encourage the use of fixed needle probes, set up before the snow season and buried under snowfalls, rather than hand-inserted probes. Finally, we propose a method to correct the measurements performed with such fixed needle probes buried in snow. This correction is based on a lookup table, derived specifically for the Hukseflux TP02 needle probe model, frequently used in snow studies. Comparison between corrected measurements and independent estimations of snow thermal conductivity obtained with numerical simulations shows an overall improvement of the needle probe values after application of the correction.


2022 ◽  
pp. 1-13
Author(s):  
John Erich Christian ◽  
Erin Whorton ◽  
Evan Carnahan ◽  
Michelle Koutnik ◽  
Gerard Roe

Abstract Mountain glaciers have response times that govern retreat due to anthropogenic climate change. We use geometric attributes to estimate individual response times for 383 glaciers in the Cascade mountain range of Washington State, USA. Approximately 90% of estimated response times are between 10 and 60 years, with many large glaciers on the short end of this distribution. A simple model of glacier dynamics shows that this range of response times entails consequential differences in recent and ongoing glacier changes: glaciers with decadal response times have nearly kept pace with anthropogenic warming, but those with multi-decadal response times are far from equilibrium, and their additional committed retreat stands well beyond natural variability. These differences have implications for changes in glacier runoff. A simple calculation highlights that transient peaks in area-integrated melt, either at the onset of forcing or due to variations in forcing, depend on the glacier's response time and degree of disequilibrium. We conclude that differences in individual response times should be considered when assessing the state of a population of glaciers and modeling their future response. These differences in response can arise simply from a range of different glacier geometries, and the same basic principles can be expected in other regions as well.


2022 ◽  
pp. 1-10
Author(s):  
Aidan Stansberry ◽  
Joel Harper ◽  
Jesse V. Johnson ◽  
Toby Meierbachtol

Abstract The geometry and thermal structure of western Greenland ice sheet are known to have undergone relatively substantial change over the Holocene. Evolution of the frozen and melted fractions of the bed associated with the ice-sheet retreat over this time frame remains unclear. We address this question using a thermo-mechanically coupled flowline model to simulate a 11 ka period of ice-sheet retreat in west central Greenland. Results indicate an episode of ~100 km of terminus retreat corresponded to ~16 km of upstream frozen/melted basal boundary migration. The majority of migration of the frozen area is associated with the enhancement of the frictional and strain heating fields, which are accentuated toward the retreating ice margin. The thermally active bedrock layer acts as a heat sink, tending to slow contraction of frozen-bed conditions. Since the bedrock heat flux in our region is relatively low compared to other regions of the ice sheet, the frozen region is relatively greater and therefore more susceptible to marginward changes in the frictional and strain heating fields. Migration of melted regions thus depends on both geometric changes and the antecedent thermal state of the bedrock and ice, both of which vary considerably around the ice sheet.


2021 ◽  
pp. 1-15
Author(s):  
Yin Fu ◽  
Qiao Liu ◽  
Guoxiang Liu ◽  
Bo Zhang ◽  
Rui Zhang ◽  
...  

Abstract Most glaciers on the Tibetan Plateau have experienced continuous mass losses in response to global warming. However, the seasonal dynamics of glaciers on the southeastern Tibetan Plateau have rarely been reported in terms of glacier surface elevation and velocity. This paper presents a first attempt to explore the seasonal dynamics of the debris-covered Dagongba Glacier within the southeastern Tibetan Plateau. We use the multitemporal unoccupied aerial vehicle images collected over the lower ablation zone on 8 June and 17 October 2018, and 13 May 2019, and then perform an analysis concerning climatic fluctuations. The results reveal that the mean surface elevation decrease of the Dagongba Glacier during the warm season ( $2.81\pm 0.44$ m) was remarkably higher than the cold season ( $0.72\pm 0.45$ m). Particularly notable glacier surface elevation changes were found around supraglacial lakes and ice cliffs where ice ablation rates were $\sim$ 3 times higher than the average. In addition, a larger longitudinal decline of glacier surface velocity was observed in the warm season than that in the cold season. In terms of further comparative analysis, the Dagongba Glacier experienced a decrease in surface velocity between 1982–83 and 2018–19, with a decrease in the warm season possibly twice as large as that in the cold season.


2021 ◽  
pp. 1-10
Author(s):  
Lucas K. Zoet ◽  
Neal R. Iverson ◽  
Lauren Andrews ◽  
Christian Helanow

Abstract Glacier slip is usually described using steady-state sliding laws that relate drag, slip velocity and effective pressure, but where subglacial conditions vary rapidly transient effects may influence slip dynamics. Here we use results from a set of laboratory experiments to examine the transient response of glacier slip over a hard bed to velocity perturbations. The drag and cavity evolution from lab experiments are used to parameterize a rate-and-state drag model that is applied to observations of surface velocity and ice-bed separation from the Greenland ice sheet. The drag model successfully predicts observed lags between changes in ice-bed separation and sliding speed. These lags result from the time (or displacement) required for cavities to evolve from one steady-state condition to another. In comparing drag estimates resulting from applying rate-and-state and steady-state slip laws to transient data, we find the peaks in drag are out of phase. This suggests that in locations where subglacial conditions vary on timescales shorter than those needed for cavity adjustment transient slip processes control basal drag.


2021 ◽  
pp. 1-20
Author(s):  
Vasiola Zhaka ◽  
Robert Bridges ◽  
Kaj Riska ◽  
Andrzej Cwirzen

Abstract Brash ice forms in harbours and ship channels from frequent ship passages and the resulting freezing–breaking cycles create a unique ice formation. The brash ice accumulation over the winter season is a result of meteorological, thermodynamical and mechanical processes. A reliable brash ice growth model is an important asset when determining navigation routes through ice conditions and when establishing port ice management solutions. This review aims to describe the brash ice development and its modelling as well as the key parameters that influence the brash ice growth and its estimation. This paper summarises the brash ice growth models and the fundamental theories of level ice growth upon which these models are based, and outlines the main knowledge gaps. The results highlight the importance of porosity and piece size distribution and their effect on the consolidation process. The inclusion of the brash ice lateral movement and the side ridge formation would improve the accuracy of forecast models. Furthermore, the findings of the study identify the effect of omitting meteorological parameters such as snow and radiation, from the brash ice growth models. Their contribution to the level ice thickness suggests a significant influence on the brash ice consolidation process.


2021 ◽  
pp. 1-13
Author(s):  
Christopher Chambers ◽  
Ralf Greve ◽  
Takashi Obase ◽  
Fuyuki Saito ◽  
Ayako Abe-Ouchi

Abstract Ice-sheet simulations of Antarctica extending to the year 3000 are analysed to investigate the long-term impacts of 21st-century warming. Climate projections are used as forcing until 2100 and afterwards no climate trend is applied. Fourteen experiments are for the ‘unabated warming’ pathway, and three are for the ‘reduced emissions’ pathway. For the unabated warming path simulations, West Antarctica suffers a much more severe ice loss than East Antarctica. In these cases, the mass loss amounts to an ensemble average of ~3.5 m sea-level equivalent (SLE) by the year 3000 and ~5.3 m for the most sensitive experiment. Four phases of mass loss occur during the collapse of the West Antarctic ice sheet. For the reduced emissions pathway, the mean mass loss is ~0.24 m SLE. By demonstrating that the consequences of the 21st century unabated warming path forcing are large and long term, the results present a different perspective to ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). Extended ABUMIP (Antarctic BUttressing Model Intercomparison Project) simulations, assuming sudden and sustained ice-shelf collapse, with and without bedrock rebound, corroborate a negative feedback for ice loss found in previous studies, where bedrock rebound acts to slow the rate of ice loss.


2021 ◽  
pp. 1-14
Author(s):  
Guillaume Jouvet ◽  
Guillaume Cordonnier ◽  
Byungsoo Kim ◽  
Martin Lüthi ◽  
Andreas Vieli ◽  
...  

Abstract This paper introduces the Instructed Glacier Model (IGM) – a model that simulates ice dynamics, mass balance and its coupling to predict the evolution of glaciers, icefields or ice sheets. The novelty of IGM is that it models the ice flow by a Convolutional Neural Network, which is trained from data generated with hybrid SIA + SSA or Stokes ice flow models. By doing so, the most computationally demanding model component is substituted by a cheap emulator. Once trained with representative data, we demonstrate that IGM permits to model mountain glaciers up to 1000 × faster than Stokes ones on Central Processing Units (CPU) with fidelity levels above 90% in terms of ice flow solutions leading to nearly identical transient thickness evolution. Switching to the GPU often permits additional significant speed-ups, especially when emulating Stokes dynamics or/and modelling at high spatial resolution. IGM is an open-source Python code which deals with two-dimensional (2-D) gridded input and output data. Together with a companion library of trained ice flow emulators, IGM permits user-friendly, highly efficient and mechanically state-of-the-art glacier and icefields simulations.


2021 ◽  
pp. 1-13
Author(s):  
Alex Priestley ◽  
Bernd Kulessa ◽  
Richard Essery ◽  
Yves Lejeune ◽  
Erwan Le Gac ◽  
...  

Abstract To understand snow structure and snowmelt timing, information about flows of liquid water within the snowpack is essential. Models can make predictions using explicit representations of physical processes, or through parameterization, but it is difficult to verify simulations. In situ observations generally measure bulk quantities. Where internal snowpack measurements are made, they tend to be destructive and unsuitable for continuous monitoring. Here, we present a novel method for in situ monitoring of water flow in seasonal snow using the electrical self-potential (SP) geophysical method. A prototype geophysical array was installed at Col de Porte (France) in October 2018. Snow hydrological and meteorological observations were also collected. Results for two periods of hydrological interest during winter 2018–19 (a marked period of diurnal melting and refreezing, and a rain-on-snow event) show that the electrical SP method is sensitive to internal water flow. Water flow was detected by SP signals before it was measured in conventional snowmelt lysimeters at the base of the snowpack. This initial feasibility study shows the utility of the SP method as a non-destructive snow sensor. Future development should include combining SP measurements with a high-resolution snow physics model to improve prediction of melt timing.


2021 ◽  
pp. 1-8
Author(s):  
Dustin M. Schroeder ◽  
Anna L. Broome ◽  
Annabel Conger ◽  
Acacia Lynch ◽  
Emma J. Mackie ◽  
...  

Abstract The earliest airborne geophysical campaigns over Antarctica and Greenland in the 1960s and 1970s collected ice penetrating radar data on 35 mm optical film. Early subglacial topographic and englacial stratigraphic analyses of these data were foundational to the field of radioglaciology. Recent efforts to digitize and release these data have resulted in geometric and ice-thickness analysis that constrain subsurface change over multiple decades but stop short of radiometric interpretation. The primary challenge for radiometric analysis is the poorly-characterized compression applied to Z-scope records and the sparse sampling of A-scope records. Here, we demonstrate the information richness and radiometric interpretability of Z-scope records. Z-scope pixels have uncalibrated fast-time, slow-time, and intensity scales. We develop approaches for mapping each of these scales to physical units (microseconds, seconds, and signal to noise ratio). We then demonstrate the application of this calibration and analysis approach to a flight in the interior of East Antarctica with subglacial lakes and to a reflight of an East Antarctic ice shelf that was observed by both archival and modern radar. These results demonstrate the potential use of Z-scope signals to extend the baseline of radiometric observations of the subsurface by decades.


Sign in / Sign up

Export Citation Format

Share Document