basal ice
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 41)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. A. Jones ◽  
A. M. G. Ferreira ◽  
B. Kulessa ◽  
M. Schimmel ◽  
A. Berbellini ◽  
...  

AbstractThe flow of the Greenland Ice Sheet is controlled by subglacial processes and conditions that depend on the geological provenance and temperature of the crust beneath it, neither of which are adequately known. Here we present a seismic velocity model of the uppermost 5 km of the Greenlandic crust. We show that slow velocities in the upper crust tend to be associated with major outlet glaciers along the ice-sheet margin, and elevated geothermal heat flux along the Iceland hotspot track inland. Outlet glaciers particularly susceptible to basal slip over deformable subglacial sediments include Jakobshavn, Helheim and Kangerdlussuaq, while geothermal warming and softening of basal ice may affect the onset of faster ice flow at Petermann Glacier and the Northeast Greenland Ice Stream. Interactions with the solid earth therefore control the past, present and future dynamics of the Greenland Ice Sheet and must be adequately explored and implemented in ice sheet models.


Author(s):  
Liana M. Agrios ◽  
Kathy J. Licht ◽  
Trevor Williams ◽  
Sidney R. Hemming ◽  
Lauren Welch ◽  
...  

Tills from moraines adjacent to major ice streams of the Weddell Sea Embayment contain distinct detrital zircon (n = 5304) and K-bearing mineral age populations (n = 323) that, when combined with pebble composition data, can be used to better understand Antarctica’s subglacial geology and ice sheet history. Till representing the Institute, Foundation, Academy, Recovery and Slessor Ice Streams each have distinct detrital zircon age populations. Detrital Ar-Ar ages are mostly younger than zircon ages, and distinctive populations include 270−300 Ma (Institute), 170−190 Ma (Foundation), and 1200−1400 Ma (Recovery), which are not easily explained by known outcrops. Pebble fractions of the Foundation and Academy tills are most diverse with up to >40% exotic erratics. The southern side of the Recovery Glacier has fossiliferous limestone erratics. Mixing models created using a nonlinear squares curve-fitting approach were developed to evaluate contributors of zircons to Foundation Ice Stream till. These model results and pebble lithology data both indicate that unexposed (subglacial) bedrock is mixed with exposed rocks to produce the observed till. Notably, the model required limited local Patuxent Formation input to the Foundation till’s zircon population. Our data suggest that sandstones underlie the Foundation Ice Stream and Recovery Glacier troughs, which has a bearing on basal ice flow conditions and results in geological controls on ice stream location. This geo- and thermo-chronological characterization of the ice streams will enable ice-rafted debris in Weddell Sea marine sediments to be traced back to its sources and interpreted in terms of ice stream dynamics.


2021 ◽  
pp. 1-7
Author(s):  
Alan W. Rempel ◽  
Colin R. Meyer ◽  
Kiya L. Riverman

Abstract The importance of glacier sliding has motivated a rich literature describing the thermomechanical interactions between ice, liquid water and bed materials. Early recognition of the gradient in melting temperature across small bed obstacles led to focused studies of regelation. An appreciation for the limits on ice deformation rates downstream of larger obstacles highlighted a role for cavitation, which has subsequently gained prominence in descriptions of subglacial drainage. Here, we show that the changes in melting temperature that accompany changes in normal stress along a sliding ice interface near cavities and other macroscopic drainage elements cause appreciable supercooling and basal mass exchange. This provides the basis of a novel formation mechanism for widely observed laminated debris-rich basal ice layers.


IUCrJ ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 842-852
Author(s):  
Jisub Hwang ◽  
Sun-Ha Park ◽  
Chang Woo Lee ◽  
Hackwon Do ◽  
Seung Chul Shin ◽  
...  

MarR family proteins regulate the transcription of multiple antibiotic-resistance genes and are widely found in bacteria and archaea. Recently, a new MarR family gene was identified by genome analysis of the psychrophilic bacterium Paenisporosarcina sp. TG-14, which was isolated from sediment-laden basal ice in Antarctica. In this study, the crystal structure of the MarR protein from Paenisporosarcina sp. TG-14 (PaMarR) was determined at 1.6 Å resolution. In the crystal structure, a novel lipid-type compound (palmitic acid) was found in a deep cavity, which was assumed to be an effector-binding site. Comparative structural analysis of homologous MarR family proteins from a mesophile and a hyperthermophile showed that the DNA-binding domain of PaMarR exhibited relatively high mobility, with a disordered region between the β1 and β2 strands. In addition, structural comparison with other homologous complex structures suggests that this structure constitutes a conformer transformed by palmitic acid. Biochemical analysis also demonstrated that PaMarR binds to cognate DNA, where PaMarR is known to recognize two putative binding sites depending on its molar concentration, indicating that PaMarR binds to its cognate DNA in a stoichiometric manner. The present study provides structural information on the cold-adaptive MarR protein with an aliphatic compound as its putative effector, extending the scope of MarR family protein research.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Mario Toubes‐Rodrigo ◽  
Sanja Potgieter‐Vermaak ◽  
Robin Sen ◽  
Edda S. Oddsdóttir ◽  
David Elliott ◽  
...  

2021 ◽  
Author(s):  
Alan Rempel ◽  
Colin Meyer ◽  
Kiya Riverman

The importance of glacier sliding has motivated a rich literature describing the thermomechanical interactions between ice, liquid water, and bed materials. Early recognition of the gradient in melting temperature across small bed obstacles led to focussed studies of regelation. An appreciation for the limits on ice deformation rates downstream of larger obstacles highlighted a role for cavitation, which has subsequently gained prominence in descriptions of subglacial drainage. Here, we show that the changes in melting temperature that accompany changes in normal stress along a sliding ice interface near cavities and other macroscopic drainage elements cause appreciable supercooling and basal mass exchange. This provides the basis of a novel formation mechanism for widely observed laminated debris-rich basal ice layers.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nils Owsianowski ◽  
Claudio Richter

AbstractIce fluxes across the grounding zone affect global ice-sheet mass loss and sea level rise. Although recent changes in ice fluxes are well constrained by remote sensing, future projections remain uncertain, because key environments affecting ice-sheet dynamics – the ice-sheet bed and grounding zone – are largely unknown. Here, we used a remotely operated vehicle to explore the grounding zone of a Weddell Sea tidewater ice cliff. At 148 m we found a 0.3–0.5 m gap between the ice and the seafloor and a 0.4 m clear facies of debris- and bubble-free basal ice, suggesting freeze-on of meltwater in the distal marine portion of the ice sheet over the last 400 yr. Ploughmarks and low epifauna cover reveal recent grounding line retreat, as corroborated by satellite remote sensing. We found dense algal tufts on the ice cliff and high phytoplankton pigment concentrations, suggesting high productivity fuelled by nutrients from ice melt. As grounded tidewater ice cliffs rim 38% of the Antarctic continent, sinking and downwelling of organic matter along with low benthic turnover may contribute to enhanced carbon sequestration, providing a potentially important feedback to climate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan Krisch ◽  
Mark James Hopwood ◽  
Janin Schaffer ◽  
Ali Al-Hashem ◽  
Juan Höfer ◽  
...  

AbstractApproximately half of the freshwater discharged from the Greenland and Antarctic Ice Sheets enters the ocean subsurface as a result of basal ice melt, or runoff draining via the grounding line of a deep ice shelf or marine-terminating glacier. Around Antarctica and parts of northern Greenland, this freshwater then experiences prolonged residence times in large cavities beneath floating ice tongues. Due to the inaccessibility of these cavities, it is unclear how they moderate the freshwater associated supply of nutrients such as iron (Fe) to the ocean. Here, we show that subglacial dissolved Fe export from Nioghalvfjerdsbrae (the ‘79°N Glacier’) is decoupled from particulate inputs including freshwater Fe supply, likely due to the prolonged ~162-day residence time of Atlantic water beneath Greenland’s largest floating ice-tongue. Our findings indicate that the overturning rate and particle-dissolved phase exchanges in ice cavities exert a dominant control on subglacial nutrient supply to shelf regions.


2021 ◽  
Vol 15 (4) ◽  
pp. 1719-1730
Author(s):  
Lucas H. Beem ◽  
Duncan A. Young ◽  
Jamin S. Greenbaum ◽  
Donald D. Blankenship ◽  
Marie G. P. Cavitte ◽  
...  

Abstract. Based on sparse data, Titan Dome has been identified as having a higher probability of containing ice that would capture the middle Pleistocene transition (1.25 to 0.7 Ma). New aerogeophysical observations (radar and laser altimetry) collected over Titan Dome, located about 200 km from the South Pole within the East Antarctic Ice Sheet, were used to characterize the region (e.g., geometry, internal structure, bed reflectivity, and flow history) and assess its suitability as a paleoclimate ice core site. The radar coupled with an available ice core chronology enabled the tracing of dated internal reflecting horizons throughout the region, which also served as constraints on basal ice age modeling. The results of the survey revealed new basal topographic detail and better constrain the ice topographical location of Titan Dome, which differs between community datasets. Titan Dome is not expected to be relevant to the study of the middle Pleistocene transition due to a combination of past fast flow dynamics, the basal ice likely being too young, and the temporal resolution likely being too coarse if 1 Ma ice were to exist.


2021 ◽  
Author(s):  
Stephan Gruber ◽  
Rupesh Subedi ◽  
Steven V. Kokelj

<p>A 2015 drilling campaign near Lac de Gras has recovered permafrost core interpreted to contain preserved basal ice of the Laurentide Ice Sheet (Subedi et al., 2020). Previous samples of basal ice from ice sheets originate from coring, usually beneath modern ice divides, modern margins of Arctic icecaps that have preserved basal ice-sheet ice, or from studies near the margins of former ice sheets. The present study may be the first evidence of basal ice a few hundred kilometers from ice divides. In this intermediate zone, rates of erosion beneath an ice sheet increase and the thermal regime at the base varies. Our finding is of applied relevance because it highlights the mosaic character of a landscape that contains terrain types with non-negligible ground-ice content, poised for climate-driven thaw and landscape change. The occurrence and mosaic character of preserved ice may be reconciled with glaciological theory and observations from mineral prospecting using the theory on the genesis of dispersal plumes in till developed by Hooke et al. (2013). The existence of preserved basal ice opens basic-research opportunities alongside exploration, mining and infrastructure development in the area.  </p><p>Hooke, R. L. B., Cummings, D. I., Lesemann, J. E., and Sharpe, D. R.: Genesis of dispersal plumes in till, Can. Jo. Earth Sci., 50, 847–855, https://doi.org/10.1139/cjes-2013-0018, 2013.</p><p>Subedi, R., Kokelj, S. V., and Gruber, S.: Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada, The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, 2020.</p>


Sign in / Sign up

Export Citation Format

Share Document