scholarly journals Classification of nonorientable regular embeddings of cartesian products of graphs

2017 ◽  
Vol 340 (8) ◽  
pp. 1871-1877
Author(s):  
Young Soo Kwon
2021 ◽  
Vol 37 (3) ◽  
pp. 907-917
Author(s):  
Martin Kreh ◽  
Jan-Hendrik de Wiljes

AbstractIn 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. In the same article, the authors proved some results on the solvability of Cartesian products, given solvable or distance 2-solvable graphs. We extend these results to Cartesian products of certain unsolvable graphs. In particular, we prove that ladders and grid graphs are solvable and, further, even the Cartesian product of two stars, which in a sense are the “most” unsolvable graphs.


2016 ◽  
Vol 15 (05) ◽  
pp. 731-770 ◽  
Author(s):  
D. P. Hewett ◽  
A. Moiola

This paper concerns the following question: given a subset [Formula: see text] of [Formula: see text] with empty interior and an integrability parameter [Formula: see text], what is the maximal regularity [Formula: see text] for which there exists a non-zero distribution in the Bessel potential Sobolev space [Formula: see text] that is supported in [Formula: see text]? For sets of zero Lebesgue measure, we apply well-known results on set capacities from potential theory to characterize the maximal regularity in terms of the Hausdorff dimension of [Formula: see text], sharpening previous results. Furthermore, we provide a full classification of all possible maximal regularities, as functions of [Formula: see text], together with the sets of values of [Formula: see text] for which the maximal regularity is attained, and construct concrete examples for each case. Regarding sets with positive measure, for which the maximal regularity is non-negative, we present new lower bounds on the maximal Sobolev regularity supported by certain fat Cantor sets, which we obtain both by capacity-theoretic arguments, and by direct estimation of the Sobolev norms of characteristic functions. We collect several results characterizing the regularity that can be achieved on certain special classes of sets, such as [Formula: see text]-sets, boundaries of open sets, and Cartesian products, of relevance for applications in differential and integral equations.


1997 ◽  
Vol 79 (1-3) ◽  
pp. 3-34 ◽  
Author(s):  
Thomas Andreae ◽  
Martin Hintz ◽  
Michael Nölle ◽  
Gerald Schreiber ◽  
Gerald W. Schuster ◽  
...  

1974 ◽  
Vol 26 (5) ◽  
pp. 1025-1035 ◽  
Author(s):  
Joseph Zaks

The maximum genus γM(G) of a connected graph G has been defined in [2] as the maximum g for which there exists an embedding h : G —> S(g), where S(g) is a compact orientable 2-manifold of genus g, such that each one of the connected components of S(g) — h(G) is homeomorphic to an open disk; such an embedding is called cellular. If G is cellularly embedded in S(g), having V vertices, E edges and F faces, then by Euler's formulaV-E + F = 2-2g.


2020 ◽  
Vol 285 ◽  
pp. 380-396
Author(s):  
Nathaniel Karst ◽  
Xierui Shen ◽  
Denise Sakai Troxell ◽  
MinhKhang Vu

2012 ◽  
Vol 192 (1) ◽  
pp. 121-141 ◽  
Author(s):  
Julian Pfeifle ◽  
Vincent Pilaud ◽  
Francisco Santos

2007 ◽  
Vol 57 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Douglas B. West ◽  
Xuding Zhu

Sign in / Sign up

Export Citation Format

Share Document