zero forcing
Recently Published Documents





Hong Son Vu ◽  
Kien Truong ◽  
Minh Thuy Le

<p>Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced.</p>

2022 ◽  
Vol 190 ◽  
pp. 108323
Takehiro Kono ◽  
Masahiro Yukawa ◽  
Tomasz Piotrowski

2022 ◽  
Vol 355 ◽  
pp. 01012
Gufang Mou ◽  
Qiuyan Zhang

The controllability for complex network system is to find the minimum number of leaders for the network system to achieve effective control of the global networks. In this paper, the problem of controllability of the directed network for a family of matrices carrying the structure under directed hypercube is considered. The relationship between the minimum number of leaders for the directed network system and the number of the signed zero forcing set is established. The minimum number of leaders of the directed networks system under a directed hypercube is obtained by computing the zero forcing number of a signed graph.

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 75
Fahad Alraddady ◽  
Irfan Ahmed ◽  
Filmon Habtemicail

This paper presents hybrid precoding for a non-orthogonal multiple access (NOMA) transmission scheme in a millimeter wave (mmWave) massive MIMO (mMIMO) downlink. In hybrid precoding, the analog precoder is obtained by the orthogonalization of the users’ channel vectors to minimize inter-beam interference. The digital precoder consists of a zero-forcing precoder to minimize inter-user interference. In order to break the barrier of one user per beam, we utilize the NOMA within the beam for power domain multiplexing among users. Simulation results show the proposed scheme’s efficacy compared to the state-of-the-art schemes and provide 1.48 times better sum-rate performance at 10 dB received SNR.

2021 ◽  
Rana Sedghi ◽  
masoumeh azghani

Abstract Interference management is of paramount importance in heterogeneous massive mimo networks (HetNet). In this paper, an algorithm has been suggested to suppress the interference in large-MIMO HetNets with imperfect channel state information(CSI). The proposed technique controls both the intra-tier and cross-tier interference of the macrocell as well as the small cells. The intra-tier interference of the macrocell as well as the cross-tier interference have been minimized under maximum transmission power and minimum signal to interference and noise ratio (SINR) constraint. The channel estimation error matrix has also been modeled using the joint sparsity property. The precoding algorithm is thus achieved through the application of semi-definite relaxation and block coordinate descent techniques. The intra-tier interference of the small cells are addressed with the aid of the zero forcing scheme. The proposed method has been validated through various simulations which confirm the superiority of the algorithm over its counterparts.

2021 ◽  
Vol 182 (3) ◽  
pp. 285-299
G. Jessy Sujana ◽  
T.M. Rajalaxmi ◽  
Indra Rajasingh ◽  
R. Sundara Rajan

A zero forcing set is a set S of vertices of a graph G, called forced vertices of G, which are able to force the entire graph by applying the following process iteratively: At any particular instance of time, if any forced vertex has a unique unforced neighbor, it forces that neighbor. In this paper, we introduce a variant of zero forcing set that induces independent edges and name it as edge-forcing set. The minimum cardinality of an edge-forcing set is called the edge-forcing number. We prove that the edge-forcing problem of determining the edge-forcing number is NP-complete. Further, we study the edge-forcing number of butterfly networks. We obtain a lower bound on the edge-forcing number of butterfly networks and prove that this bound is tight for butterfly networks of dimensions 2, 3, 4 and 5 and obtain an upper bound for the higher dimensions.

Chaeriah Bin Ali Wael ◽  
Suyoto ◽  
Nasrullah Armi ◽  
Arief Suryadi Satyawan ◽  
Bagus Edy Sukoco ◽  

Sign in / Sign up

Export Citation Format

Share Document