fast searching
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Zhifeng Xu

This research proposes a set of novel algorithms for structural reliability estimation based on muti-dimensional binary search tree and breadth-first search, namely the reliability accuracy supervised searching algorithm, the limit-state surface resolution supervised searching algorithm and the reliability index precision supervised fast searching algorithm. The proposed algorithms have the following strengths: 1, all the proposed algorithms have satisfactory computational efficiency by reducing redundant samplings; 2, their computational costs are stable and computable; 3, performance functions of high non-linearity can be will handled; 4, the reliability accuracy supervised searching algorithm can adapt its computational cost according to a prescribed accuracy; 5, the limit-state surface resolution supervised searching algorithm is able to probe sharp changes on limit-state surfaces; 6, the reliability index precision supervised fast searching algorithm computes the reliability index with sufficient precision in a fast way.


2021 ◽  
Vol 35 (1) ◽  
pp. 93-98
Author(s):  
Ratna Kumari Challa ◽  
Siva Prasad Chintha ◽  
B. Reddaiah ◽  
Kanusu Srinivasa Rao

Currently, the machine learning group is well-understood and commonly used for predictive modelling and feature generation through linear methodologies such as reversals, principal analysis and canonical correlation analyses. All these approaches are typically intended to capture fascinating subspaces in the original space of high dimensions. These methods have all a closed-form approach because of its simple linear structures, which makes estimation and theoretical analysis for small datasets very straightforward. However, it is very common for a data set to have millions or trillions of samples and features in modern machine learning problems. We deal with the problem of fast estimation from large volumes of data for ordinary squares. The search operation is a very important operation and it is useful in many applications. Some applications when the data set size is large, the linear search takes the time which is proportional to the size of the data set. Binary search and interpolation search performs good for the search of elements in the data set in O(logn) and ⋅O(log(⋅logn)) respectively in the worst case. Now, in this paper, an effort is made to develop a novel fast searching algorithm based on the least square regression curve fitting method. The algorithm is implemented and its execution results are analyzed and compared with binary search and interpolation search performance. The proposed model is compared with the traditional methods and the proposed fast searching algorithm exhibits better performance than the traditional models.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2014
Author(s):  
Yi Lv ◽  
Mandan Liu ◽  
Yue Xiang

The clustering analysis algorithm is used to reveal the internal relationships among the data without prior knowledge and to further gather some data with common attributes into a group. In order to solve the problem that the existing algorithms always need prior knowledge, we proposed a fast searching density peak clustering algorithm based on the shared nearest neighbor and adaptive clustering center (DPC-SNNACC) algorithm. It can automatically ascertain the number of knee points in the decision graph according to the characteristics of different datasets, and further determine the number of clustering centers without human intervention. First, an improved calculation method of local density based on the symmetric distance matrix was proposed. Then, the position of knee point was obtained by calculating the change in the difference between decision values. Finally, the experimental and comparative evaluation of several datasets from diverse domains established the viability of the DPC-SNNACC algorithm.


2019 ◽  
Vol 63 (1) ◽  
pp. 572-588 ◽  
Author(s):  
Bin Yang ◽  
Hongwei Yang ◽  
Shuang Li

Sign in / Sign up

Export Citation Format

Share Document