Zero-sum invariants on finite abelian groups with large exponent

2019 ◽  
Vol 342 (12) ◽  
pp. 111617
Author(s):  
Dongchun Han ◽  
Hanbin Zhang
10.37236/2602 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Yushuang Fan ◽  
Weidong Gao ◽  
Guoqing Wang ◽  
Qinghai Zhong ◽  
Jujuan Zhuang

Let $G$ be a finite abelian group of exponent $\exp(G)$. By $D(G)$ we denote the smallest integer $d\in \mathbb N$ such that every sequence over $G$ of length at least $d$ contains a nonempty zero-sum subsequence. By $\eta(G)$ we denote the smallest integer $d\in \mathbb N$ such that every sequence over $G$ of length at least $d$ contains a zero-sum subsequence $T$ with length $|T|\in [1,\exp(G)]$, such a sequence $T$ will be called a short zero-sum sequence. Let $C_0(G)$ denote the set consists of all integer $t\in [D(G)+1,\eta(G)-1]$ such that every zero-sum sequence of length exactly $t$ contains a short zero-sum subsequence. In this paper, we investigate the question whether $C_0(G)\neq \emptyset$ for all non-cyclic finite abelian groups $G$. Previous results showed that $C_0(G)\neq \emptyset$ for the groups $C_n^2$ ($n\geq 3$) and $C_3^3$. We show that more groups including the groups $C_m\oplus C_n$ with $3\leq m\mid n$, $C_{3^a5^b}^3$, $C_{3\times 2^a}^3$, $C_{3^a}^4$ and $C_{2^b}^r$ ($b\geq 2$) have this property. We also determine $C_0(G)$ completely  for some groups including the groups of rank two, and some special groups with large exponent.


2021 ◽  
Vol 163 (2) ◽  
pp. 317-332
Author(s):  
Jiangtao Peng ◽  
Yuanlin Li ◽  
Chao Liu ◽  
Meiling Huang

2013 ◽  
Vol 34 (8) ◽  
pp. 1331-1337 ◽  
Author(s):  
Yushuang Fan ◽  
Weidong Gao ◽  
Linlin Wang ◽  
Qinghai Zhong

10.37236/899 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Jujuan Zhuang

Let $G=C_{n_1}\oplus \ldots \oplus C_{n_r}$ be a finite abelian group with $r=1$ or $1 < n_1|\ldots|n_r$, and let $S=(a_1,\ldots,a_t)$ be a sequence of elements in $G$. We say $S$ is an unextendible sequence if $S$ is a zero-sum free sequence and for any element $g\in G$, the sequence $Sg$ is not zero-sum free any longer. Let $L(G)=\lceil \log_2{n_1}\rceil+\ldots+\lceil \log_2{n_r}\rceil$ and $d^*(G)=\sum_{i=1}^r(n_i-1)$, in this paper we prove, among other results, that the minimal length of an unextendible sequence in $G$ is not bigger than $L(G)$, and for any integer $k$, where $L(G)\leq k \leq d^*(G)$, there exists at least one unextendible sequence of length $k$.


2006 ◽  
Vol 24 (4) ◽  
pp. 337-369 ◽  
Author(s):  
Weidong Gao ◽  
Alfred Geroldinger

2016 ◽  
Vol 162 ◽  
pp. 601-613 ◽  
Author(s):  
Weidong Gao ◽  
Dongchun Han ◽  
Hanbin Zhang

2006 ◽  
Vol 58 (2) ◽  
pp. 159-186 ◽  
Author(s):  
Y. Edel ◽  
C. Elsholtz ◽  
A. Geroldinger ◽  
S. Kubertin ◽  
L. Rackham

2020 ◽  
Vol 217 ◽  
pp. 193-217 ◽  
Author(s):  
Jiangtao Peng ◽  
Yuanlin Li ◽  
Chao Liu ◽  
Meiling Huang

Sign in / Sign up

Export Citation Format

Share Document