scholarly journals Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: A long-term record, 1992–2007

2008 ◽  
Vol 55 (18-19) ◽  
pp. 2118-2131 ◽  
Author(s):  
Hugh W. Ducklow ◽  
Matthew Erickson ◽  
Joann Kelly ◽  
Martin Montes-Hugo ◽  
Christine A. Ribic ◽  
...  
Author(s):  
Oscar Schofield ◽  
Michael Brown ◽  
Josh Kohut ◽  
Schuyler Nardelli ◽  
Grace Saba ◽  
...  

The West Antarctic Peninsula (WAP) has experienced significant change over the last 50 years. Using a 24 year spatial time series collected by the Palmer Long Term Ecological Research programme, we assessed long-term patterns in the sea ice, upper mixed layer depth (MLD) and phytoplankton productivity. The number of sea ice days steadily declined from the 1980s until a recent reversal that began in 2008. Results show regional differences between the northern and southern regions sampled during regional ship surveys conducted each austral summer. In the southern WAP, upper ocean MLD has shallowed by a factor of 2. Associated with the shallower mixed layer is enhanced phytoplankton carbon fixation. In the north, significant interannual variability resulted in the mixed layer showing no trended change over time and there was no significant increase in the phytoplankton productivity. Associated with the recent increases in sea ice there has been an increase in the photosynthetic efficiency (chlorophyll a -normalized carbon fixation) in the northern and southern regions of the WAP. We hypothesize the increase in sea ice results in increased micronutrient delivery to the continental shelf which in turn leads to enhanced photosynthetic performance. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’.


2010 ◽  
Vol 37 (22) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ken O. Buesseler ◽  
Andrew M. P. McDonnell ◽  
Oscar M. E. Schofield ◽  
Deborah K. Steinberg ◽  
Hugh W. Ducklow

2004 ◽  
Vol 51 (17-19) ◽  
pp. 1925-1946 ◽  
Author(s):  
John M. Klinck ◽  
Eileen E. Hofmann ◽  
Robert C. Beardsley ◽  
Baris Salihoglu ◽  
Susan Howard

2021 ◽  
Author(s):  
Hyewon Heather Kim ◽  
Ya-Wei Luo ◽  
Hugh W. Ducklow ◽  
Oscar M. Schofield ◽  
Deborah K. Steinberg ◽  
...  

Abstract. The West Antarctic Peninsula (WAP) is a rapidly warming region, with substantial ecological and biogeochemical responses to climate change and variability for the past decades, revealed by multi-decadal observations from the Palmer Antarctica Long-Term Ecological Research (LTER) program. The wealth of these long-term observations provides an important resource for ecosystem modelling, but there has been a lack of focus on the development of numerical models that simulate time-evolving plankton dynamics over the Austral growth season along the coastal WAP. Here we developed a one-dimensional, data assimilation planktonic ecosystem model (i.e., the WAP-1D-VAR model v1.0) equipped with a variational adjoint and model parameter optimization scheme. We first demonstrate the modified and newly added model schemes to the pre-existing food-web and biogeochemical components of the WAP-1D-VAR model, including diagnostic sea-ice forcing and trophic interactions specific to the WAP region. We then conducted model experiments by assimilating eleven different data types from an example Palmer LTER growth season (October 2002–March 2003) directly related to corresponding model state variables and intercompartmental flows. The iterative, data assimilation procedure reduced by 80 % the misfits between observations and model results, compared to before optimization, via an optimized set of 14 parameters out of total 72 free parameters. The optimized model results captured key WAP ecological features, such as blooms during seasonal sea-ice retreat, the lack of macronutrient limitation, and comparable values of the assimilated and non-assimilated model state variables and flows to other studies, as well as several important ecosystem metrics. One exception was slightly underestimated particle export flux, for which we discuss fully potential underlying reasons. The data assimilation scheme of the WAP-1D-VAR model enabled the available observational data to constrain previously poorly understood processes, including the partitioning of primary production by different phytoplankton groups, the optimal chlorophyll to carbon ratio of the WAP phytoplankton community, and the partitioning of dissolved organic carbon pools with different lability. The WAP-1D-VAR model was successfully employed to glue the snapshots from a range of the available data sets together to explain and understand the observed dynamics along the coastal WAP.


2012 ◽  
Vol 25 (14) ◽  
pp. 4799-4816 ◽  
Author(s):  
Michael S. Dinniman ◽  
John M. Klinck ◽  
Eileen E. Hofmann

Abstract Circumpolar Deep Water (CDW) can be found near the continental shelf break around most of Antarctica. Advection of this relatively warm water (up to 2°C) across the continental shelf to the base of floating ice shelves is thought to be a critical source of heat for basal melting in some locations. A high-resolution (4 km) regional ocean–sea ice–ice shelf model of the west Antarctic Peninsula (WAP) coastal ocean was used to examine the effects of changes in the winds on across-shelf CDW transport and ice shelf basal melt. Increases and decreases in the strength of the wind fields were simulated by scaling the present-day winds by a constant factor. Additional simulations considered effects of increased Antarctic Circumpolar Current (ACC) transport. Increased wind strength and ACC transport increased the amount of CDW transported onto the WAP continental shelf but did not necessarily increase CDW flux underneath the nearby ice shelves. The basal melt underneath some of the deeper ice shelves actually decreased with increased wind strength. Increased mixing over the WAP shelf due to stronger winds removed more heat from the deeper shelf waters than the additional heat gained from increased CDW volume transport. The simulation results suggest that the effect on the WAP ice shelves of the projected strengthening of the polar westerlies is not a simple matter of increased winds causing increased (or decreased) basal melt. A simple budget calculation indicated that iron associated with increased vertical mixing of CDW could significantly affect biological productivity of this region.


Sign in / Sign up

Export Citation Format

Share Document