scholarly journals Sensitivity of Circumpolar Deep Water Transport and Ice Shelf Basal Melt along the West Antarctic Peninsula to Changes in the Winds

2012 ◽  
Vol 25 (14) ◽  
pp. 4799-4816 ◽  
Author(s):  
Michael S. Dinniman ◽  
John M. Klinck ◽  
Eileen E. Hofmann

Abstract Circumpolar Deep Water (CDW) can be found near the continental shelf break around most of Antarctica. Advection of this relatively warm water (up to 2°C) across the continental shelf to the base of floating ice shelves is thought to be a critical source of heat for basal melting in some locations. A high-resolution (4 km) regional ocean–sea ice–ice shelf model of the west Antarctic Peninsula (WAP) coastal ocean was used to examine the effects of changes in the winds on across-shelf CDW transport and ice shelf basal melt. Increases and decreases in the strength of the wind fields were simulated by scaling the present-day winds by a constant factor. Additional simulations considered effects of increased Antarctic Circumpolar Current (ACC) transport. Increased wind strength and ACC transport increased the amount of CDW transported onto the WAP continental shelf but did not necessarily increase CDW flux underneath the nearby ice shelves. The basal melt underneath some of the deeper ice shelves actually decreased with increased wind strength. Increased mixing over the WAP shelf due to stronger winds removed more heat from the deeper shelf waters than the additional heat gained from increased CDW volume transport. The simulation results suggest that the effect on the WAP ice shelves of the projected strengthening of the polar westerlies is not a simple matter of increased winds causing increased (or decreased) basal melt. A simple budget calculation indicated that iron associated with increased vertical mixing of CDW could significantly affect biological productivity of this region.

2021 ◽  
Author(s):  
Ria Oelerich ◽  
Karen J. Heywood ◽  
Gillian M. Damerell ◽  
Andrew F. Thompson

<p>The continental shelf of the Bellingshausen Sea, located between the West Antarctic Peninsula and the Amundsen Sea, Antarctica, is poorly investigated, compared with its neighbours. Here, the southernmost frontal jet of the Antarctic Circumpolar Current is adjacent to the continental slope which impacts the transport of warm Circumpolar Deep Water onto the shelf. This in turn can influence the transport of heat southward across the shelf and therefore the melting of vulnerable ice shelves.</p><p>We present model-based investigations using the GLORYS12V1 1/12° reanalysis monthly output (GLOBAL_REANALYSIS_PHY_001_030) over 19 years from 2000 to 2018. By connecting the location of the frontal jet to SSH contours we identify seasonal and interannual variability in this current system and demonstrate that the closer the frontal jet is to the continental slope, the greater the flow of warm deep water onto the shelf. This onshore flow is limited to specific areas closest to the frontal jet, predominantly in the eastern Bellingshausen Sea. In contrast, other areas, specifically those troughs where water flows towards the West Antarctic Peninsula and close to the coastline of Antarctica show opposite behaviour with respect to onshelf heat content. Further analyses of flow patterns also indicate the involvement of a coastal jet close to the shore that is weaker when more warm water is on the shelf. Understanding the variability in the current structures throughout the continental shelf of the Bellingshausen Sea in response to a changing frontal jet is essential to gain knowledge about the distribution of heat and therefore the melting of ice shelves.</p>


2015 ◽  
Vol 119 ◽  
pp. 54-65 ◽  
Author(s):  
Victoria L. Peck ◽  
Claire S. Allen ◽  
Sev Kender ◽  
Erin L. McClymont ◽  
Dominic A. Hodgson

2004 ◽  
Vol 51 (17-19) ◽  
pp. 1925-1946 ◽  
Author(s):  
John M. Klinck ◽  
Eileen E. Hofmann ◽  
Robert C. Beardsley ◽  
Baris Salihoglu ◽  
Susan Howard

Sign in / Sign up

Export Citation Format

Share Document