Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data

2016 ◽  
Vol 64 ◽  
pp. 49-58 ◽  
Author(s):  
Elisa Schäfer ◽  
Janne Heiskanen ◽  
Vuokko Heikinheimo ◽  
Petri Pellikka
REINWARDTIA ◽  
2018 ◽  
Vol 17 (2) ◽  
Author(s):  
Asep Sadili ◽  
Kuswata Kartawinata ◽  
Herwasono Soedjito ◽  
Edy Nasriadi Sambas

ADILI, A., KARTAWINATA, K., SOEDJITO, H. & SAMBAS, E. N. 2018. Tree species diversity in a pristine montane forest previously untouched by human activities in Foja Mountains, Papua, Indonesia. Reinwardtia 17(2): 133‒154. ‒‒ A study on structure and composition of the pristine montane forest previously untouched by human activities was conducted at the Foja Mountains in November 2008. We established a one-hectare plot divided into 100 subplots of 10 m × 10 m each. We enumerated all trees with DBH ≥ 10 cm which diameters were measured, heights were estimated and habitats were noted. We recorded 59 species, 42 genera and 27 families, comprising 693 trees with the total basal area (BA) of 41.35 m2/ha. The forest had lower species richness compared to those of lowland forests in Kalimantan, and Sumatra and montane forests in West Java. The Shannon-Wiener’s diversity index was 3.22. Nothofagus rubra (Importance Value, IV=47.89%) and Parinari corymbosa (IV=40.3%) were the dominant species, constituting the basis for designating the forest as the Nothofagus rubra - Parinari corymbosa association. To date, the dominance of N. rubra is unique to the Foja Mountains, as elsewhere in Papua the montane forests were dominated by N. pullei or other species. The species-area curve indicated a minimal area of 5000 m2. On the family level Fagaceae (IV=53.23%), Chrysobalanaceae (IV=40.53%) and Myristicaceae (IV=26.43%) were dominant. Verti-cally the forest consisted of four strata (A–D). In each stratum Nothofagus rubra, Platea latifolia, Parinari corymbosa and Myristica hollrungii were dominant. The diameter class distribution of Nothofagus rubra, Parinari corymbosa and Platea latifolia led us to assume that these species were regenerating well.


Author(s):  
Christopher B Anderson

Background. Biogeographers assess how species distributions and abundances affect the structure, function, and composition of ecosystems. Yet we face a major challenge: it is difficult to precisely map species across landscapes. Novel Earth observations could obviate this challenge. Airborne imaging spectrometers measure plant functional traits at high resolution, and these measurements can be used to identify tree species. Plant traits are often highly conserved within species, and highly variable between species, which provides the biophysical basis for species mapping. In this paper I describe a trait-based approach to species identification with imaging spectroscopy, CCB-ID, which was developed as part of a NIST-sponsored ecological data science evaluation (ECODSE). Methods. These methods were developed using NEON airborne imaging spectroscopy data. CCB-ID classifies tree species using trait-based reflectance variation and decision tree-based machine learning models, approximating a morphological trait and dichotomous key method traditionally used in botanical classification. First, outliers were removed using a spectral variance threshold. The remaining samples were transformed using principal components analysis and resampled by species to reduce common species biases. Gradient boosting and random forest classifiers were trained using the transformed and resampled feature data. Prediction probabilities were then calibrated using sigmoid regression, and sample-scale predictions were averaged to the crown scale. Results. This approach performed well according to the competition metrics, receiving a rank-1 accuracy score of 0.919, and a cross-entropy cost score of 0.447 on the test data. Accuracy and specificity scores were high for all species, but precision and recall scores were variable for rare species. PCA transformation improved accuracy scores compared to models trained using reflectance data, but outlier removal and data resampling exacerbated class imbalance problems. Discussion. CCB-ID accurately classified tree species using NEON imaging spectroscopy data, reporting the best classification scores among participants. However, it failed to overcome several well-known species mapping challenges, like precisely identifying rare species. Key takeaways include (1) training models to maximize metrics beyond accuracy (e.g. recall) could improve rare species predictions, (2) within-genus trait variation may drive spectral separability, precluding efforts to distinguish between functionally convergent species, (3) outlier removal and data resampling exacerbated class imbalance problems, and should be carefully implemented, (4) PCA transformation greatly improved model results, and (5) feature selection could further improve species classification models. CCB-ID is open source, designed for use with NEON data, and available to support future species mapping efforts.


REINWARDTIA ◽  
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Nur Muhammad Heriyanto ◽  
Ismayadi Samsoedin ◽  
Kuswata Kartawinata

HERIYANTO, N. M.,  SAMSOEDIN,  I. & KARTAWINATA, K. 2018. Tree species diversity, structural characteristics and carbon stock in a one-hectare plot of the protection forest area in West Lampung Regency, Indonesia. Reinwardtia 18(1): 1‒18. — A study of species composition, structure and carbon stock in the lower montane forest in the Register 45B of  the protection forest area  in the Tri Budi Syukur  District, Kebun Tebu Village, West Lampung Regency, Lampung Province was conducted in September 2016. The objective of the study was to undertake quantified measurements of floristic composition and structure of and carbon storage in the lower montane forest at 965 m asl in the protection forest area.  A one hectare plot (100 m × 100 m) was established   randomly. The plot was further divided into 25 subplots of 20 m × 20 m each to record trees. Quadrats of 5 m × 5 m for saplings and subquadrats of 2 m × 2 m for seedlings were nested in the tree subplots. We recorded  247 trees with diameter at breast height ≥ 10 cm representing 25 species and 19 families, with a total basal area of 59.14 m2. Overall including seedlings and saplings we recorded 31 species.  The species richness was very low due to disturbances, and was the lowest compared to that of other forests in Sumatra, Kalimantan and Java. The dominant species in terms of importance values (IV) were Litsea cf. fulva (IV=77.02), Lithocarpus reinwardtii (IV=45.21) and Altingia excelsa (IV=26.95). Dominant species in seedling and sapling stages were Polyalthia lateriflora (IV=27.54) and Memecylon multiflorum (IV=41.58).  Biomass and carbon stock of trees with DBH ≥ 10 cm was 50.87 ton/ha and 25.43 ton C/ha, respectively. Regeneration was poor. Structurally and floristically the forest was a developing disturbed forest and the composition  will remain unchanged in many years to come. The successions leading to terminal communities similar to the original conditions would be very slow and should be assisted and enhanced by applying ecological restoration through planting tree species native to the site.   


2018 ◽  
Author(s):  
Christopher B Anderson

Background. Biogeographers assess how species distributions and abundances affect the structure, function, and composition of ecosystems. Yet we face a major challenge: it is difficult to precisely map species across landscapes. Novel Earth observations could obviate this challenge. Airborne imaging spectrometers measure plant functional traits at high resolution, and these measurements can be used to identify tree species. Plant traits are often highly conserved within species, and highly variable between species, which provides the biophysical basis for species mapping. In this paper I describe a trait-based approach to species identification with imaging spectroscopy, CCB-ID, which was developed as part of a NIST-sponsored ecological data science evaluation (ECODSE). Methods. These methods were developed using NEON airborne imaging spectroscopy data. CCB-ID classifies tree species using trait-based reflectance variation and decision tree-based machine learning models, approximating a morphological trait and dichotomous key method traditionally used in botanical classification. First, outliers were removed using a spectral variance threshold. The remaining samples were transformed using principal components analysis and resampled by species to reduce common species biases. Gradient boosting and random forest classifiers were trained using the transformed and resampled feature data. Prediction probabilities were then calibrated using sigmoid regression, and sample-scale predictions were averaged to the crown scale. Results. This approach performed well according to the competition metrics, receiving a rank-1 accuracy score of 0.919, and a cross-entropy cost score of 0.447 on the test data. Accuracy and specificity scores were high for all species, but precision and recall scores were variable for rare species. PCA transformation improved accuracy scores compared to models trained using reflectance data, but outlier removal and data resampling exacerbated class imbalance problems. Discussion. CCB-ID accurately classified tree species using NEON imaging spectroscopy data, reporting the best classification scores among participants. However, it failed to overcome several well-known species mapping challenges, like precisely identifying rare species. Key takeaways include (1) training models to maximize metrics beyond accuracy (e.g. recall) could improve rare species predictions, (2) within-genus trait variation may drive spectral separability, precluding efforts to distinguish between functionally convergent species, (3) outlier removal and data resampling exacerbated class imbalance problems, and should be carefully implemented, (4) PCA transformation greatly improved model results, and (5) feature selection could further improve species classification models. CCB-ID is open source, designed for use with NEON data, and available to support future species mapping efforts.


2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


Sign in / Sign up

Export Citation Format

Share Document