unsupervised clustering
Recently Published Documents


TOTAL DOCUMENTS

706
(FIVE YEARS 282)

H-INDEX

33
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Yongjie Zhou ◽  
Liangwen Wang ◽  
Wen Zhang ◽  
Jingqin Ma ◽  
Zihan Zhang ◽  
...  

Purpose. The long noncoding RNAs (lncRNAs) play the important role in tumor occurrence and progression, and the epithelial to mesenchymal transition (EMT) is the critical process for tumor migration. However, the role of EMT-related lncRNA in hepatocellular carcinoma (HCC) has not been elucidated. Methods. In this study, we selected the EMT-related lncRNAs in HCC by using data from The Cancer Genome Atlas database (TCGA). Two prognostic models of the overall survival (OS) and relapse-free survival (RFS) were constructed and validated through Cox regression model, Kaplan-Meier analysis, and the receiver-operating characteristic (ROC) curves. The unsupervised clustering analysis was utilized to investigate the association between EMT-lncRNAs with tumor immune microenvironment. ESTIMATE algorithm and gene set enrichment analysis (GSEA) were used to estimate tumor microenvironment and associated KEGG pathways. Results. Two EMT-related lncRNA prognostic models of OS and RFS were constructed. Kaplan-Meier curves showed the dismal prognosis of OS and RFS in the group with high-risk score. The ROC curves and AUC values in two prognostic models indicated the discriminative value in the training set and validation set. Patients with HCC were clustered into two subgroups according the unsupervised clustering analysis. Lnc-CCNY-1 was selected as the key lncRNA. GSVA analysis showed that lnc-CCNY-1 was negatively associated with peroxisome proliferator-activated receptor (PPAR) signaling pathway and positively correlated with CELL cycle pathway. Conclusion. Two EMT-related lncRNA prognostic models of OS and RFS were constructed to discriminate patients and predict prognosis of HCC. EMT-related lncRNAs may play a role on prognosis of HCC by influencing the immune microenvironment. Lnc-CCNY-1 was selected as the key EMT-related lncRNA for further exploration.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Maria Mircea ◽  
Mazène Hochane ◽  
Xueying Fan ◽  
Susana M. Chuva de Sousa Lopes ◽  
Diego Garlaschelli ◽  
...  

AbstractThe ability to discover new cell phenotypes by unsupervised clustering of single-cell transcriptomes has revolutionized biology. Currently, there is no principled way to decide whether a cluster of cells contains meaningful subpopulations that should be further resolved. Here, we present phiclust (ϕclust), a clusterability measure derived from random matrix theory that can be used to identify cell clusters with non-random substructure, testably leading to the discovery of previously overlooked phenotypes.


Author(s):  
Thomas Bettuzzi ◽  
Camille Hua ◽  
Emmanuelle Diaz ◽  
Audrey Colin ◽  
Pierre Wolkenstein ◽  
...  

2022 ◽  
Author(s):  
Hannah Paris Cowley ◽  
Michael S. Robinette ◽  
Jordan K. Matelsky ◽  
Daniel Xenes ◽  
Aparajita Kashyap ◽  
...  

Abstract As clinicians are faced with a deluge of new information, data science can play a key role in highlighting key features towards developing new clinical hypotheses. Indeed, insights derived from machine learning can serve as a clinical support tool by connecting care providers with results from big data analysis to identify latent patterns that may not be easily detected by even skilled human observers. In this work, we show an example of collaboration between clinicians and data scientists during the COVID-19 pandemic, identifying subgroups of COVID-19 patients with unanticipated outcomes or who are high-risk for severe disease or death. We apply a random forest classifier model to predict adverse patient outcomes early in the disease course, and we connect our classification results to unsupervised clustering of patient features that may underpin patient risk. The paradigm for using data science for hypothesis generation and clinical decision support, as well as our triage classification approach and unsupervised clustering methods to determine patient cohorts, are applicable to driving rapid hypothesis generation and iteration in a variety of clinical challenges, including future public health crises.


2022 ◽  
Vol 2 ◽  
Author(s):  
Ivo V. Stuldreher ◽  
Alexandre Merasli ◽  
Nattapong Thammasan ◽  
Jan B. F. van Erp ◽  
Anne-Marie Brouwer

Research on brain signals as indicators of a certain attentional state is moving from laboratory environments to everyday settings. Uncovering the attentional focus of individuals in such settings is challenging because there is usually limited information about real-world events, as well as a lack of data from the real-world context at hand that is correctly labeled with respect to individuals' attentional state. In most approaches, such data is needed to train attention monitoring models. We here investigate whether unsupervised clustering can be combined with physiological synchrony in the electroencephalogram (EEG), electrodermal activity (EDA), and heart rate to automatically identify groups of individuals sharing attentional focus without using knowledge of the sensory stimuli or attentional focus of any of the individuals. We used data from an experiment in which 26 participants listened to an audiobook interspersed with emotional sounds and beeps. Thirteen participants were instructed to focus on the narrative of the audiobook and 13 participants were instructed to focus on the interspersed emotional sounds and beeps. We used a broad range of commonly applied dimensionality reduction ordination techniques—further referred to as mappings—in combination with unsupervised clustering algorithms to identify the two groups of individuals sharing attentional focus based on physiological synchrony. Analyses were performed using the three modalities EEG, EDA, and heart rate separately, and using all possible combinations of these modalities. The best unimodal results were obtained when applying clustering algorithms on physiological synchrony data in EEG, yielding a maximum clustering accuracy of 85%. Even though the use of EDA or heart rate by itself did not lead to accuracies significantly higher than chance level, combining EEG with these measures in a multimodal approach generally resulted in higher classification accuracies than when using only EEG. Additionally, classification results of multimodal data were found to be more consistent across algorithms than unimodal data, making algorithm choice less important. Our finding that unsupervised classification into attentional groups is possible is important to support studies on attentional engagement in everyday settings.


2022 ◽  
pp. 108517
Author(s):  
Jingyu Wang ◽  
Zhenyu Ma ◽  
Feiping Nie ◽  
Xuelong Li

2021 ◽  
Author(s):  
Joseph Soloman Thangraj ◽  
Jay Pulliam ◽  
Mrinal K. Sen

Abstract Seismic interferometry has been shown to extract body wave arrivals from ambient noise seismic data. However, surface waves dominate ambient noise data, so cross-correlating and stacking all available data may not succeed in extracting body wave arrivals. A better strategy is to find portions of the data in which body wave energy dominates and to process only those portions. One challenge is that passive seismic recordings comprise huge volumes of data, so identifying portions with strong body-wave energy could be difficult or time-consuming. We use spatio-temporal features, calculated with data recorded by all receivers together, to perform unsupervised clustering. Using data recorded by a dense seismic array in Sweetwater, TX we were able to identify five clusters, representing a subsets of the complete dataset that contain similar features, and extract a 7 km/s body wave arrival from one cluster. This arrival did not emerge when we performed the same cross-correlation and stacking regimen on the entire dataset.


Sign in / Sign up

Export Citation Format

Share Document