structural characteristics
Recently Published Documents





2022 ◽  
Vol 12 (4) ◽  
pp. 807-812
Yan Li ◽  
Yu-Ren Zhang ◽  
Ping Zhang ◽  
Dong-Xu Li ◽  
Tian-Long Xiao

It is a critical impact on the processing of biological cells to protein–protein interactions (PPIs) in nature. Traditional PPIs predictive biological experiments consume a lot of human and material costs and time. Therefore, there is a great need to use computational methods to forecast PPIs. Most of the existing calculation methods are based on the sequence characteristics or internal structural characteristics of proteins, and most of them have the singleness of features. Therefore, we propose a novel method to predict PPIs base on multiple information fusion through graph representation learning. Specifically, firstly, the known protein sequences are calculated, and the properties of each protein are obtained by k-mer. Then, the known protein relationship pairs were constructed into an adjacency graph, and the graph representation learning method–graph convolution network was used to fuse the attributes of each protein with the graph structure information to obtain the features containing a variety of information. Finally, we put the multi-information features into the random forest classifier species for prediction and classification. Experimental results indicate that our method has high accuracy and AUC of 78.83% and 86.10%, respectively. In conclusion, our method has an excellent application prospect for predicting unknown PPIs.

2022 ◽  
Vol 6 (1) ◽  
pp. 75-85
Abdalhussain A. Khadayeir ◽  
Ahmed H. Wannas ◽  
Falah H. Yousif

Objective: In this study, α-Fe2O3 thin film was formed on a glass substrate to study the impact of adding cold plasma on the self-cleaning and antibacterial properties of the samples. Method: The samples were synthesized using the chemical spray pyrolysis (CSP) method at 450°C. X-ray powder diffraction (XRD), scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), and atomic force microscope were used to investigate the morphological and structural characteristics of α-Fe2O3 thin layers prior to and following plasma injection. Finding: The degree of wettability and antibacterial characteristics of iron oxide (hematite) thin film were evaluated in the presence of gram-negative and gram-positive bacteria prior to and following plasma injection, given the great potential of plasma injection in the surface modification of thin films. Novelty: The findings indicate that exposing plasma to α-Fe2O3thin film produces substantial changes in morphology, self-cleaning, and antibacterial characteristics. Doi: 10.28991/ESJ-2022-06-01-06 Full Text: PDF

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 102
Junjie Wu ◽  
Qingquan Zhi ◽  
Xiaohong Deng ◽  
Xingchun Wang ◽  
Xiaodong Chen ◽  

The Qingchengzi orefield is an important polymetallic ore concentration zone in the northern margin of the North China Craton (NCC). The region has significant metallogenic potential for deep mining. Many areas with gold mineralization have been found in the shallow area of Taoyuan–Xiaotongjiapuzi–Linjiasandaogou in the east of the Qingchengzi orefield. To assess the distribution of mineralization levels, we carried out deep exploration using the transient electromagnetic method (TEM). A superconductive quantum interference device (SQUID) magnetometer and a conventional induction coil were used for field data acquisition. The SQUID data inversion results reflect the bottom interface of the high-conductivity area, the fold state of the underlying dolomite marble stratum, and the deep structural characteristics of the syncline. Secondary crumples appear in the inversion results of the southern segment of TEM, which is inferred as a favorable area for deep gold mineralization. Negative values appear in the SQUID data of some stations, to varying degrees. This induced polarization phenomenon may be related to deep gold mineralization.

2022 ◽  
Vol 08 (01) ◽  
Rakhimov F.F. ◽  

The article presents the synthesis of organosilicon compounds based on industrial secondary raw materials of urea-formaldehyde resin and tetraethoxysilane. The structural characteristics of the synthesized hydrophobic polymer have been studied. Compositions of hydrophobic compositions based on synthesized poly (oligomers) have been developed and tested in concrete mixtures.

2022 ◽  
Vol 131 (2) ◽  
pp. 023303
Haolin Li ◽  
Jinyuan Yang ◽  
Liwei Zhang ◽  
Siyuan Zhang ◽  
Anbang Sun

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Yanbo Zhang ◽  
Guangyu Gao ◽  
Shaohong Yan ◽  
Xulong Yao ◽  
Xiangxin Liu ◽  

Meso-structure is an important factor affecting the characteristics of rock fracture. To determine the factors influencing the internal meso-structural characteristics upon the crack generation and extension, rock samples were tested under uniaxial cyclic loading and unloading and examined using computed tomography (CT) scanning. CT scanning was used to visualize and investigate the entire process of fracture source generation and its development in three dimensions, and finally the location information of the fracture source was determined. The mineral composition and structure along the fracture path inside the specimen were studied by using a polarizing microscope, and the evolution of fracture propagation around mineral particles was revealed based on its mineralogical characteristics. Results indicate that based on the fracture source around different rock meso-structure types, the initial fracture source can also be divided into different types, namely, the primary porosity type, the micro-crack type, and the mineral grain type. The strength characteristics of mineral grains can determine whether the crack extends around the gravel or through it. The hard grains at the crack-tip promote the transformation of tensile stress to shear stress, which lead to the change in the direction of crack extension and bifurcation. The spatial shape of the cracks after rock fracture is related to the initial distribution of minerals and is more complicated in areas where minerals are concentrated. The crack extension around gravel particles also generates a mode of failure, affecting large grains with gravel spalling from the matrix. The findings provide a study basis for identifying the potentially dangerous areas and provide early warning for the safety of underground engineering construction operations.

2022 ◽  
Melek Tassoker ◽  
Muhammet Usame Ozic ◽  
Fatma Yuce

Abstract Objective: The aim of the present study was to predict osteoporosis on panoramic radiographs of women over 50 years of age through deep learning algorithms.Method: Panoramic radiographs of 744 female patients over 50 years of age were labeled as C1, C2, and C3 depending on mandibular cortical index (MCI). According to this index; C1: presence of a smooth and sharp mandibular cortex (normal); C2: resorption cavities at endosteal margin and 1 to 3-layer stratification (osteopenia); C3: completely porotic cortex (osteoporosis). The data of the present study were reviewed in different categories including C1-C2-C3, C1-C2, C1-C3 and C1-(C2+C3) as two-class and three-class prediction. The data were separated as 20% random test data; and the remaining data were used for training and validation with 5-fold cross-validation. AlexNET, GoogleNET, ResNET-50, SqueezeNET, and ShuffleNET deep learning models are trained through the transfer learning method. The results were evaluated by performance criteria including accuracy, sensitivity, specificity, F1-score, AUC and training duration. Findings: The dataset C1-C2-C3 has an accuracy rate of 81.14% with AlexNET; the dataset C1-C2 has an accuracy rate of 88.94% with GoogleNET; the dataset C1-C3 has an accuracy rate of 98.56% with AlexNET; and the dataset C1-(C2+C3) has an accuracy rate of 92.79% with GoogleNET. Conclusion: The highest accuracy was obtained in differentiation of C3 and C1 where osseous structure characteristics change significantly. Since the C2 score represent the intermediate stage (osteopenia), structural characteristics of the bone present behaviors closer to C1 and C3 scores. Therefore, the data set including the C2 score provided relatively lower accuracy results.

2022 ◽  
Mingkun Pang ◽  
Tianjun Zhang ◽  
Rongtao Liu ◽  
Haotian Wang

Abstract Particle loss is the root cause for the occurrence of Karst Collapse Pillars (KCP) sudden water events. The pore adjustment of KCP filler will further induce seepage destabilization, and it is also a process that sudden water catastrophe must go through. In order to investigate the direct relationship between stress conditions, water pressure conditions, and gradation structure on the pore structure of rock samples, the steady-state percolation method was used to investigate the percolation test system of variable-mass crushed rock masses. The results show that: 1) the structural characteristics of rock grains under the same stress environment are closely related to their extrusion fragmentation process and the softening and scouring effect of water. Rubbing, rotating, fracturing, grinding and plugging are the main forms of action of their intergranular action. 2) The filling particles before and after the loss meet the fractal law and have fractal characteristics. 3) The percentage of fine particles in the whole process of infiltration loss is as high as 34.4%. The adjustment of pore structure is related to the particle size gradation, and the reciprocal action of water flow will form a stable water-conducting channel. 4) The sudden water process of the specimen under particle loss can be divided into three stages: initial seepage, catastrophic destabilization and pipe flow surge.

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 55
Qiang Gao ◽  
Yong Zhu ◽  
Jinhua Liu

A fuel metering valve actuated by two binary-coded digital valve arrays (BDVAs) is proposed to improve the reliability of conventional fuel metering valves piloted by a servo valve. The design concept of this configuration is obtained from the structural characteristics of the dual nozzle-flapper and the flow regulation method of the digital hydraulic technology. The structure and working principle of the fuel metering valve are presented. Then, a mathematical model of the entire valve is developed for dynamic analysis. Subsequently, the mechanism of the transient flow uncertainty of the BDVA is revealed through simulation to determine the fluctuation in the velocity of the fuel metering valve. Furthermore, step response indicates that the delay time of the fuel metering valve is within 4.1 ms. Finally, to improve the position tracking accuracy of the fuel metering valve, a velocity feedforward proportional-integral controller with pulse code modulation is proposed. A series of comparative analyses indicate that compared with those of the velocity feedforward controller, the average and standard deviation of the position error for the proposed controller are reduced by 78 and 72.7%, respectively. The results prove the feasibility of the proposed valve and the effectiveness of the proposed control strategy.

Sign in / Sign up

Export Citation Format

Share Document