scholarly journals Thermal Storage Concept for Solar Thermal Power Plants with Direct Steam Generation

2014 ◽  
Vol 49 ◽  
pp. 993-1002 ◽  
Author(s):  
M. Seitz ◽  
P. Cetin ◽  
M. Eck
Author(s):  
F. Zaversky ◽  
S. Bergmann ◽  
W. Sanz

Solar thermal power plants are a promising way of providing clean renewable electric energy. These plants concentrate the incoming solar direct irradiation in order to heat up a heat transfer fluid. The collected thermal energy can be stored or instantly delivered to a power block where part of the thermal energy is converted to electrical energy in a turbine with the connected generator. The parabolic trough collector plant is the today’s most developed solar thermal power plant type. There the solar irradiation is focused on receiver tubes which are concentrically placed to the focal lines of the parabolic trough collectors. A high temperature oil is pumped through these receiver tubes, which collects the heat and delivers it later on to the steam generator of the connected Rankine steam cycle. In order to improve the efficiency of these solar thermal power plants, the direct steam generation (DSG) within the parabolic trough collector receiver tubes is being investigated. Both types of parabolic trough collectors, the conventional type using oil as heat transfer fluid and the direct steam generation type, are subject of this paper. A detailed steady-state parabolic trough collector model was developed for each type, using the thermodynamic simulation software IPSEpro. The developed models consider the cosine-loss attenuation factor, the shading attenuation factor, optical losses, as well as thermal losses. Appropriate heat transfer and pressure loss correlations were implemented for both collector types. For the direct steam generation model, distinct collectors for the preheating section, the evaporation section and the superheating section were used. Furthermore, the suitable length of discretization for the modeling of one collector loop within a center-fed solar field was investigated. Calculated solar field performance data for the oil concept were compared to validated data available in open literature. Finally, a power plant simulation with each collector type, over the course of one reference day, showed the great potential of the direct steam generation, as well as the suitability of IPSEpro for running solar thermal power plant yield simulations.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 935 ◽  
Author(s):  
Jorge Llamas ◽  
David Bullejos ◽  
Manuel Ruiz de Adana

The evolution of electric generation systems, according to relevant legislation, allows for the parallel evolution of the installed power capacity of renewable resources with the development of technologies for renewable resources, therefore optimizing the choice of energy mix from renewable resources by prioritizing the implementation of concentrating solar thermal plants. Thanks to their great potential, parabolic trough solar thermal power plants have become the most widely spread type of electricity generation by renewable solar energy. Nonetheless, the operation of the plant is not unique; it must be adapted to the parameters of solar radiation and market behavior for each specific location. This work focuses on the search for the optimal strategies of operation by a mathematical model of a 50 MWe parabolic trough thermal power plant with thermal storage. The analysis of the different ways of operation throughout a whole year, including model verification via a currently operating plant, provides meaningful insights into the electricity generated. Focused to work under non-regulated electricity markets to adjust this type of technology to the European directives, the presented model of optimization allows for the adaptation of the curve of generation to the network demands and market prices, rising the profitability of the power plant. Thus, related to solar resources and market price, the economic benefit derived from the electricity production improves between 5.17% and 7.79%.


Author(s):  
Klaus-Ju¨rgen Riffelmann ◽  
Daniela Graf ◽  
Paul Nava

From 1984 to 1992, the first commercial solar thermal power plants — SEGS I to IX — were built in the Californian Mojave desert. The first generation of trough collectors (LS1) used in SEGS I showed an aperture area of about 120 m2 (1’292 ft2), having an aperture width of 2.5 m (8.2 ft). With the second generation collector (LS2), used in SEGS II to VI, the aperture width was doubled to 5 m (16.4 ft). The third generation (LS3) has been increased regarding width (5.76 m or 18.9 ft) and length (96 m or 315 ft) to about 550 m2 (5’920 ft2) aperture. It was used in the last SEGS plants VIII and IX, those plants having a capacity of 80 MW each. After more than 10 years stagnancy, several commercial plants in the US (the 64 MW Nevada Solar One project) and Spain (the ANDASOL projects, 50 MW each with 8 h thermal storage) started operation in 2007/2008. New collectors have been developed, but all are showing similar dimensions as either the LS2 or the LS3 collector. One reason for this is the limited availability of key components, mainly the parabolic shaped mirrors and heat collection elements. However, in order to reduce cost, solar power projects are getting larger and larger. Several projects in the range of 250 MW, with and without thermal storage system, are going to start construction in 2011, requiring solar field sizes of 1 to 2.5 Million m2. FLABEG, market leader of parabolic shaped mirrors and e.g. mirror supplier for all SEGS plants and most of the Spanish plants, has started the development of a new collector generation to serve the urgent market needs: lower cost and improved suitability for large solar fields. The new generation will utilize accordingly larger reflector panels and heat collection elements attended by advanced design, installation methods and control systems at the same time. The so-called ‘Ultimate Trough’ collector is showing an aperture area of 1’667 m2 (17’944 ft2), with an aperture width of 7.5 m (24.6 ft). Some design features are presented in this paper, showing how the new and huge dimensions could be realized without compromising stiffness, and bending of the support structure and improving the optical performance at the same time. Solar field layouts for large power plants are presented, and solar field cost savings in the range of 25% are disclosed.


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Javier Sanz-Bermejo ◽  
Víctor Gallardo-Natividad ◽  
José Gonzalez-Aguilar ◽  
Manuel Romero

This work proposes and analyses several integration schemes specially conceived for direct steam generation (DSG) in megawatt (MW) range central receiver solar thermal power plants. It is focused on the optical performance related to the heliostat field and the arrangement of receiver absorbers, and the management of steam within a Rankine cycle in the range between 40–160 bar and 400–550 °C at design point. The solar receiver is composed of one single element for saturated steam systems or two vertically aligned separated units, which correspond to the boiler and the superheater (dual-receiver concept), for superheated steam solar thermal power plants. From a fixed heliostat field obtained after layout optimization for the saturated steam solar plant the heliostat field is divided in two concentric circular trapezoids where each of them independently supplies the solar energy required by the boiler and the superheater for the different steam conditions. It has been observed that the arrangement locating the boiler above the superheater provides a slightly higher optical efficiency of the collector system, formed by the solar field and the receiver, compared with the reverse option with superheater above boiler. Besides, two-zone solar fields provide lower performances than the entire heliostat layout aiming at one absorber (saturation systems). Optical efficiency of two-zone solar fields decreases almost linearly with the increment of superheater heat demand. Concerning the whole solar collector, heliostat field plus receiver, the performance decreases with temperature and almost linearly with the steam pressure. For the intervals of steam pressure and temperature under analysis, solar collector of saturated steam plant achieves an optical efficiency 3.2% points higher than the superheated steam system at 40 bar and 400 °C, and the difference increases up to 9.3% points when compared with superheated system at 160 bar and 550 °C. On the other hand, superheated steam systems at 550 °C and pressure between 60 and 80 bar provide the highest overall efficiency, and it is 2.3% points higher than performance of a saturated steam solar plant at 69 bar. However, if saturated steam cycle integrates an intermediate reheat process, both would provide similar performances. Finally, it has been observed that central receiver systems (CRS) producing saturated steam and superheated steam at 500 °C operating at 40 bar provide similar performances.


2011 ◽  
Vol 88 (11) ◽  
pp. 4055-4066 ◽  
Author(s):  
Antonio Rovira ◽  
María José Montes ◽  
Manuel Valdes ◽  
José María Martínez-Val

Author(s):  
Markus Eck ◽  
David Kretschmann ◽  
Jan Fabian Feldhoff ◽  
Michael Wittmann

Technical and economical evaluation of solar thermal power plants constantly gains more importance for industry and research. The reliability of the results highly depends on the assumptions made for the applied parameters. Reducing a power plant system to one single, deterministic number for evaluation, like the levelized cost of electricity (LCOE), might end in misleading results. Probabilistic approaches can help to better evaluate systems [1] and scenarios [2]. While industry looks for safety in investment and profitability, research is predominantly interested in the evaluation of concepts and the identification of promising new approaches. Especially for research, dealing with higher and hardly quantifiable uncertainties, it is desirable to get a detailed view of the system and its main influences. However, to get there, also a good knowledge on the stochastic interrelations and its interpretation is required. Therefore, this paper mainly assesses the influences of basic stochastic assumptions and suggests a methodology to consider suitable stochastic input, especially for parameters of systems still under research. As examples, the comparison between a parabolic trough plant with synthetic oil and direct steam generation is used.


Sign in / Sign up

Export Citation Format

Share Document