scholarly journals Multi-objective optimal configurations of a membrane reactor for steam methane reforming

2022 ◽  
Vol 8 ◽  
pp. 527-538
Author(s):  
Penglei Li ◽  
Lingen Chen ◽  
Shaojun Xia ◽  
Rui Kong ◽  
Yanlin Ge
2016 ◽  
Vol 41 (24) ◽  
pp. 10193-10201 ◽  
Author(s):  
Hani W. Abu El Hawa ◽  
Sean-Thomas B. Lundin ◽  
Neil S. Patki ◽  
J. Douglas Way

2019 ◽  
Vol 41 (2) ◽  
pp. 219-219
Author(s):  
Mustafa Kamal Pasha Mustafa Kamal Pasha ◽  
Iftikhar Ahmad Iftikhar Ahmad ◽  
Jawad Mustafa Jawad Mustafa ◽  
Manabu Kano Manabu Kano

Hydrogen being a green fuel is rapidly gaining importance in the energy sector. Steam methane reforming is one of the most industrially important chemical reaction and a key step in the production of high purity hydrogen. Due to inherent deficiencies of conventional reforming reactors, a new concept based on fluidized bed membrane reactor is getting the focus of researchers. In this work, a nickel-based fluidized bed membrane reactor model is developed in the Aspen PLUSand#174; process simulator. A user-defined membrane module is embedded in the Aspen PLUSand#174; through its interface with Microsoftand#174; Excel. Then, a series combination of Gibbs reactors and membrane modules are used to develop a nickel-based fluidized bed membrane reactor. The model developed for nickel-based fluidized bed membrane reactor is compared with palladium-based membrane reactor in terms of methane conversion and hydrogen yield for a given panel of major operating parameters. The simulation results indicated that the model can accurately predict the behavior of a membrane reactor under different operating conditions. In addition, the model can be used to estimate the effective membrane area required for a given rate of hydrogen production.


Sign in / Sign up

Export Citation Format

Share Document