scholarly journals Improving finite sample approximation by central limit theorems for estimates from Data Envelopment Analysis

2020 ◽  
Vol 284 (3) ◽  
pp. 1002-1015 ◽  
Author(s):  
Léopold Simar ◽  
Valentin Zelenyuk
2014 ◽  
Vol 31 (2) ◽  
pp. 394-422 ◽  
Author(s):  
Alois Kneip ◽  
Léopold Simar ◽  
Paul W. Wilson

Data envelopment analysis (DEA) and free disposal hull (FDH) estimators are widely used to estimate efficiencies of production units. In applications, both efficiency scores for individual units as well as average efficiency scores are typically reported. While several bootstrap methods have been developed for making inference about the efficiencies of individual units, until now no methods have existed for making inference about mean efficiency levels. This paper shows that standard central limit theorems do not apply in the case of means of DEA or FDH efficiency scores due to the bias of the individual scores, which is of larger order than either the variance or covariances among individual scores. The main difficulty comes from the fact that such statistics depend on efficiency estimators evaluated at random points. Here, new central limit theorems are developed for means of DEA and FDH scores, and their efficacy for inference about mean efficiency levels is examined via Monte Carlo experiments.


2021 ◽  
Vol 382 (1) ◽  
pp. 1-47
Author(s):  
Henk Bruin ◽  
Dalia Terhesiu ◽  
Mike Todd

AbstractWe obtain limit theorems (Stable Laws and Central Limit Theorems, both standard and non-standard) and thermodynamic properties for a class of non-uniformly hyperbolic flows: almost Anosov flows, constructed here. The link between the pressure function and limit theorems is studied in an abstract functional analytic framework, which may be applicable to other classes of non-uniformly hyperbolic flows.


2015 ◽  
Vol 125 (2) ◽  
pp. 428-457 ◽  
Author(s):  
Yan-Xia Ren ◽  
Renming Song ◽  
Rui Zhang

1992 ◽  
Vol 24 (2) ◽  
pp. 267-287 ◽  
Author(s):  
Allen L. Roginsky

Three different definitions of the renewal processes are considered. For each of them, a central limit theorem with a remainder term is proved. The random variables that form the renewal processes are independent but not necessarily identically distributed and do not have to be positive. The results obtained in this paper improve and extend the central limit theorems obtained by Ahmad (1981) and Niculescu and Omey (1985).


Sign in / Sign up

Export Citation Format

Share Document